People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Giuntini, Diletta
Hamburg University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Efficient modelling of ceramic sintering processes:Application to bilayers and membranescitations
- 2023Nanoindentation creep of supercrystalline nanocompositescitations
- 2023Efficient modelling of ceramic sintering processescitations
- 2022Nanoindentation creep of supercrystalline nanocomposites
- 2022Nanoindentation of Supercrystalline Nanocomposites:Linear Relationship Between Elastic Modulus and Hardnesscitations
- 2022Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivitycitations
- 2022Bridging Nanocrystals to Robust, Multifunctional, Bulk Materials through Nature-Inspired, Hierarchical Designcitations
- 2022Nanoindentation of Supercrystalline Nanocompositescitations
- 2021Constitutive and fracture behavior of ultra-strong supercrystalline nanocompositescitations
- 2021Defects and plasticity in ultrastrong supercrystalline nanocompositescitations
- 2021Deformation Behavior of Cross-Linked Supercrystalline Nanocomposites: An in Situ SAXS/WAXS Study during Uniaxial Compressioncitations
- 2021Deformation Behavior of Cross-Linked Supercrystalline Nanocompositescitations
- 2020Ultra-thin and ultra-strong organic interphase in nanocomposites with supercrystalline particle arrangement: Mechanical behavior identification via multiscale numerical modelingcitations
- 2020Mapping the Mechanical Properties of Hierarchical Supercrystalline Ceramic-Organic Nanocompositescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites
- 2019Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocompositescitations
- 2019Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: Development of mechanically robust, bulk superparamagnetic materials
- 2019Anisotropy of mass transfer during sintering of powder materials with pore–particle structure orientationcitations
- 2019Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: development of mechanically robust, bulk superparamagnetic materialscitations
- 2019Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent–Ligand Interactionscitations
- 2016Sintering shape distortions controlled by interface roughness in powder compositescitations
- 2013Initial stage of free pressureless spark-plasma sintering of vanadium carbide: Determination of surface diffusion parameterscitations
Places of action
Organizations | Location | People |
---|
article
Ultra-thin and ultra-strong organic interphase in nanocomposites with supercrystalline particle arrangement: Mechanical behavior identification via multiscale numerical modeling
Abstract
A key challenge in the development of inorganic-organic nanocomposites is the mechanical behavior identification of the organic phase. For supercrystalline materials, in which the organic phase ranges down to sub-nm areas, the identification of the organic materials\' mechanical properties is however experimentally inaccessible. The supercrystalline nanocomposites investigated here are 3D superlattices of self-assembled iron oxide nanoparticles, surface-functionalized with crosslinked oleic acid ligands. They exhibit the highest reported values of Young\'s modulus, nanohardness and strength for inorganic-organic nanocomposites. A multiscale numerical modeling approach is developed to identify these properties using supercrystalline representative volume elements, in which the nanoparticles are arranged in a face-centered cubic superlattice and the organic phase is modeled as a thin layer interfacing each particle. A Drucker-Prager-type elastoplastic constitutive law with perfectly plastic yielding is identified as being able to describe the supercrystals\' response in nanoindentation accurately. As the nanoparticles behave in a purely elastic manner with very high stiffness, the underlying constitutive law of the organic phase is also identified to be Drucker-Prager-type elastoplastic, with a Young\'s modulus of 13GPa and a uniaxial tensile yield stress of 900MPa, remarkably high values for an organic material, and matching well with experimental and DFT-based estimations. Furthermore, a sensitivity study indicates that small configurational changes within the supercrystalline lattice do not significantly alter the overall stiffness behavior. Multiscale numerical modeling is thus proven to be able to identify the nanomechanical properties of supercrystals, and can ultimately be used to tailor these materials\' mechanical behavior starting from superlattice considerations.