People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kalfon Cohen, E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022In Situ Synchrotron X-ray Microtomography of Progressive Damage in Canted Notched Cross-Ply Composites with Interlaminar Nanoreinforcementcitations
- 2021In situ synchrotron computed tomography study of nanoscale interlaminar reinforcement and thin-ply effects on damage progression in composite laminatescitations
- 2020New interlaminar features and void distributions in advanced aerospace-grade composites revealed via automated algorithms using micro-computed tomographycitations
- 2017Interlaminar reinforcement of carbon fiber composites using aligned carbon nanotubes
- 2017Damage modelling of thin-ply nano-reinforced composite laminates
- 2017Synergetic effects of thin ply and nanostitching studied by synchrotron radiation computed tomography
Places of action
Organizations | Location | People |
---|
article
New interlaminar features and void distributions in advanced aerospace-grade composites revealed via automated algorithms using micro-computed tomography
Abstract
X-ray micro-computed tomography (mu CT) is used to quantify morphology in AS4/8552 (autoclave) and IM7/M56 (Out-of-Autoclave, OoA) aerospace-grade advanced unidirectional-ply carbon fiber prepreg composites, revealing several previously unreported features. The micron-scale (1 mu m voxel size) three-dimensional datasets combined with automated, objective algorithms, revealed the following previously unreported features of AS4/8552 and IM7/M56 laminates, respectively: all ply interfaces analyzed have misplaced microfibers at densities of 1-2 per mm(2) of interface area that can contribute to the mean thickness of the interlaminar regions of 8.6 mu m and 14.4 mu m; all ply interfaces have elongated (aspect ratio > 10 and presumed to extend indefinitely) periodic resin pockets along the microfiber direction of the plies bounding the interlaminar region that we term tow-aligned resin pockets (TARPs), with typical thicknesses that are 2-3X greater than the average interlaminar thickness; overall void fractions are low at similar to 0.002 vol% and similar to 0.001 vol%, comprised primarily of newly-quantified "sub-microvoids" with an average volume of 26-31 mu m(3) that are equally pervasive in both materials, numbering similar to 300 per mm(3). The new interlaminar region and void tools were also utilized to analyze laminates with aligned carbon nanotubes (A-CNTs), termed "nanostitches", incorporated between plies to reinforce the interlaminar regions. The addition of A-CNTs increased the interlaminar thickness by 2.2 mu m and 8.0 mu m for the AS4/8552 and IM7/M56 systems, respectively, but did not affect the quantity or distribution of voids or TARPs. These newly-identified features are relevant to the mechanical performance of such composites, as they may have positive or negative effects on damage initiation and progression.