People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kramer, E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Towards aerospace grade thin-ply composites ::effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerancecitations
- 2019Fabrication of flax fibre-reinforced cellulose propionate thermoplastic compositescitations
- 2019Fabrication of flax fibre-reinforced cellulose propionate thermoplastic compositescitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of flax fibre-reinforced cellulose propionate thermoplastic composites
Abstract
<p>Natural materials such as wood exhibit high mechanical properties through cellulose structured at multiple length scales and embedded in a matrix of similar chemical structure. These hierarchical materials have inspired the design of lightweight composites composed of naturally occurring polymers. However, the close proximity of melt and decomposition temperature remain a challenge. In this work, cellulose propionate (CP) is modified to reduce its glass transition temperature and melt viscosity, allowing its use as a matrix in a natural fibre-reinforced composite. Through better impregnation, the modified CP matrix composites showed an increase in stiffness and strength of ∼10% and 20%, respectively, in comparison to unmodified CP matrix composites. The impact properties also increased by up to 28%, showing that modified CP is a credible matrix for realising sustainable all-cellulose natural fibre composites with high stiffness, strength and toughness.</p>