People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pereira, Lf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
A micro-mechanics perspective to the invariant-based approach to stiffness
Abstract
To simplify the analysis and characterisation of composite laminates, an invariant-based approach to stiffness that takes the trace of the plane stress stiffness matrix as a material property was recently proposed. In the present work, a study based on micro-mechanical models brings new insight to this invariant-based approach. The Rule of Mixtures and the Halpin-Tsai models are used to establish the relations between the fibre volume fraction, the fibre/matrix stiffness ratios, and the trace-normalised engineering constants of unidirectional laminae and multidirectional laminates. For sufficiently high longitudinal fibre/matrix stiffness ratios and for fibre volume fractions between 50% and 70%, typical of advanced CFRPs, the variation of the trace-normalised longitudinal Young's modulus is within 6% for unidirectional laminae and within 1% for multidirectional laminates, supporting the definition of an invariant-based approach to stiffness based on a Master Ply concept and laminate factors derived thereof, defining clearly a domain of applicability of the invariant theory and confirming the empirical observations of the past.