Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xiao, J.

  • Google
  • 5
  • 56
  • 90

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Colloidal Synthesis and Optical Properties of Perovskite-Inspired Cesium Zirconium Halide Nanocrystalscitations
  • 2020Optical and electronic properties of colloidal CdSe quantum rings11citations
  • 2019Ligand Shell Structure in Lead Sulfide-Oleic Acid Colloidal Quantum Dots Revealed by Small-Angle Scattering42citations
  • 2019Quantitative Analysis of grafted CNT dispersion and of their stiffening of polyurethane (PU)23citations
  • 2016Efficient singlet exciton fission in pentacene prepared from a soluble precursor14citations

Places of action

Chart of shared publication
Kubicki, Dj
1 / 2 shared
Macmanus-Driscoll, Jl
1 / 16 shared
Scanlon, Do
1 / 36 shared
Divitini, G.
1 / 24 shared
Macpherson, S.
1 / 8 shared
Gałkowski, K.
1 / 2 shared
Shamsi, J.
1 / 1 shared
Stranks, Sd
1 / 36 shared
Abfalterer, A.
1 / 2 shared
Savory, Cn
1 / 5 shared
Li, W.
1 / 48 shared
Mc Hugh, J.
1 / 1 shared
Legrand, L.
1 / 2 shared
Caglar, M.
1 / 1 shared
Steinmetz, V.
1 / 1 shared
Baikie, T.
1 / 2 shared
Pandya, R.
1 / 4 shared
Andaji-Garmaroudi, Z.
1 / 10 shared
Barisien, T.
1 / 1 shared
Stranks, S. D.
1 / 18 shared
Friend, Richard, H.
3 / 549 shared
Ruggeri, E.
1 / 3 shared
Liu, Y.
1 / 99 shared
Rao, A.
3 / 53 shared
Nguyen, M.
1 / 8 shared
Greenham, N. C.
3 / 70 shared
Gauriot, N.
1 / 1 shared
King, S. M.
1 / 4 shared
Zhang, Z.
1 / 62 shared
Dowland, S.
1 / 2 shared
Gray, V.
1 / 4 shared
Winkel, J.
1 / 1 shared
Kilbride, R. C.
1 / 4 shared
Penfold, N. J. W.
1 / 1 shared
Toolan, D. T. W.
1 / 3 shared
Washington, A. L.
1 / 3 shared
Ryan, A. J.
1 / 6 shared
Jones, R. A. L.
1 / 4 shared
Weir, M. P.
1 / 3 shared
Roiban, Lucian
1 / 17 shared
Seveyrat, L.
1 / 19 shared
Lebrun, L.
1 / 14 shared
Dhungana, D. S.
1 / 1 shared
Masenelli-Varlot, Karine
1 / 29 shared
Diguet, G.
1 / 4 shared
Cavaillé, J. Y.
1 / 1 shared
Jomaa, M. H.
1 / 4 shared
Tabachnyk, M.
1 / 10 shared
Karani, A. H.
1 / 1 shared
Böhm, M. L.
1 / 10 shared
Harkin, D.
1 / 2 shared
Novák, J.
1 / 11 shared
Pazos-Outón, L. M.
1 / 6 shared
Jellicoe, T. C.
1 / 4 shared
Broch, K.
1 / 7 shared
Pearson, A. J.
1 / 12 shared
Chart of publication period
2020
2019
2016

Co-Authors (by relevance)

  • Kubicki, Dj
  • Macmanus-Driscoll, Jl
  • Scanlon, Do
  • Divitini, G.
  • Macpherson, S.
  • Gałkowski, K.
  • Shamsi, J.
  • Stranks, Sd
  • Abfalterer, A.
  • Savory, Cn
  • Li, W.
  • Mc Hugh, J.
  • Legrand, L.
  • Caglar, M.
  • Steinmetz, V.
  • Baikie, T.
  • Pandya, R.
  • Andaji-Garmaroudi, Z.
  • Barisien, T.
  • Stranks, S. D.
  • Friend, Richard, H.
  • Ruggeri, E.
  • Liu, Y.
  • Rao, A.
  • Nguyen, M.
  • Greenham, N. C.
  • Gauriot, N.
  • King, S. M.
  • Zhang, Z.
  • Dowland, S.
  • Gray, V.
  • Winkel, J.
  • Kilbride, R. C.
  • Penfold, N. J. W.
  • Toolan, D. T. W.
  • Washington, A. L.
  • Ryan, A. J.
  • Jones, R. A. L.
  • Weir, M. P.
  • Roiban, Lucian
  • Seveyrat, L.
  • Lebrun, L.
  • Dhungana, D. S.
  • Masenelli-Varlot, Karine
  • Diguet, G.
  • Cavaillé, J. Y.
  • Jomaa, M. H.
  • Tabachnyk, M.
  • Karani, A. H.
  • Böhm, M. L.
  • Harkin, D.
  • Novák, J.
  • Pazos-Outón, L. M.
  • Jellicoe, T. C.
  • Broch, K.
  • Pearson, A. J.
OrganizationsLocationPeople

article

Quantitative Analysis of grafted CNT dispersion and of their stiffening of polyurethane (PU)

  • Roiban, Lucian
  • Seveyrat, L.
  • Lebrun, L.
  • Dhungana, D. S.
  • Xiao, J.
  • Masenelli-Varlot, Karine
  • Diguet, G.
  • Cavaillé, J. Y.
  • Jomaa, M. H.
Abstract

International audience ; Electroactive devices are developed for energy conversion purposes. In particular, polyurethanes (PU) are lightweight and flexible materials, which have demonstrated their ability to convert electrical energy into mechanical energy (actuation by electrostriction) and vice-versa (energy harvesting). It has been shown that energy conversion efficiency can be increased by incorporating carbon nanotubes (CNTs) into a PU matrix. The counterpart of this 2 improvement is the stiffness increase, which in turn limits the electrostriction efficiency. On the other hand, it is well known that CNTs are hardly dispersed in a polymeric matrix, and that the interfacial adhesion strength is generally poor. One solution to improve both dispersion and adhesion consists in grafting polymeric chains onto the CNT surfaces. As most of the works dedicated to improve material electroactivity are mainly empirical, this work aims to (i) better characterize these material microstructures by electron tomography, through the measurement of the CNT tortuosity, the CNT-CNT minimum distance and the number of their contacts, and (ii) and to predict their mechanical stiffness from these microstructural data. From electron microscopy observations of the studied materials, CNTs can be assumed to be composed of successive stiff rods of measured length and orientation, linked together by flexible kinks. Their mechanical stiffening effect in PU is, simply and in an original way, evaluated using the classical analytical equations derived by Halpin and Kardos, accounting for the microstructural parameters determined by electron tomography. It appears clearly that, due to their tortuosity and despite their ultra-high longitudinal stiffness, CNTs only poorly stiffen soft matrices. Fully stretching 10 m long nanotubes increases the composite modulus by almost 10 for a fraction of only 2 vol.%.

Topics
  • impedance spectroscopy
  • dispersion
  • surface
  • polymer
  • Carbon
  • nanotube
  • tomography
  • strength
  • composite
  • transmission electron microscopy
  • electron microscopy
  • quantitative determination method