People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khakalo, Alexey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Biodegradable Cellulose Nanocomposite Substrate for Recyclable Flexible Printed Electronicscitations
- 2022Nanocellulose Removes the Need for Chemical Crosslinking in Tannin-Based Rigid Foams and Enhances Their Strength and Fire Retardancycitations
- 2021Manufacture of all-wood sawdust-based particle board using ionic liquid-facilitated fusion processcitations
- 2021Rheological behavior of high consistency enzymatically fibrillated cellulose suspensionscitations
- 2020Wood based materials with ionic liquid fusion
- 2019Anti-oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extractcitations
- 2018The effect of oxyalkylation and application of polymer dispersions on the thermoformability and extensibility of papercitations
- 2018Protein-mediated interfacial adhesion in composites of cellulose nanofibrils and polylactidecitations
- 2017Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles
- 2017Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrilscitations
- 2017Advanced Structures and Compositions for 3D Forming of Cellulosic Fiberscitations
- 2017Advanced Structures and Compositions for 3D Forming of Cellulosic Fibers:Dissertation
- 2016Effect of polyurethane addition on the strength, extensibility and 3D formability of paper and board
- 2016Combined mechanical and chemical modifications towards super-stretchable paper-based materials
Places of action
Organizations | Location | People |
---|
article
Protein-mediated interfacial adhesion in composites of cellulose nanofibrils and polylactide
Abstract
The role of animal protein, casein, as compatibilizer and eco-friendly dispersant in composites comprising cellulose nanofibrils (CNF) and polylactic acid (PLA) was investigated. The effect of casein-mediated surface modification of PLA was validated with dynamic adhesion experiments that considered the contact area according to JKR approximation. In fact, a remarkable increase by ∼50% in the work of adhesion between CNF and PLA was observed after casein adsorption. It is likely that the improved adhesion gave rise to an enhanced dispersion of CNF and PLA within the composite matrix. Moreover, the mechanical properties of the respective nanocomposites were significantly improved. When compared to protein-free CNF/PLA nanocomposites, the systems containing casein indicated an enhanced extensibility (by 130%) and tensile toughness (by 60%) whereas tensile strength and Young's modulus were improved to a limited extent (6 and 12%, respectively). Finally, it is demonstrated that the surface modification of PLA with casein improves the compatibility between CNF and PLA, which is a prerequisite for the feasible preparation of 3D shaped cellulose-based packaging materials by direct thermoforming.