Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schulte, Karl

  • Google
  • 15
  • 45
  • 396

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2019Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite34citations
  • 2018Fundamentals of the temperature-dependent electrical conductivity of a 3D carbon foam—Aerographitecitations
  • 2018Thermomechanical characteristics of ODF-silica Nafion® nanocomposite for PEMFCs applicationcitations
  • 20173D carbon networks and their polymer composites62citations
  • 2017Compression fracture of CFRP laminates containing stress intensificationscitations
  • 2017Growth model of a carbon based 3D structure (Aerographite) and electrical/mechanical properties of compositescitations
  • 2016Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite34citations
  • 2016Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy composites50citations
  • 2015Three-dimensional Aerographite-GaN hybrid networks46citations
  • 2015Three-dimensional Aerographite-GaN hybrid networks: single step fabrication of porous and mechanically flexible materials for multifunctional applicationscitations
  • 2013Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures43citations
  • 2011Characterization of the state of dispersion of carbon nanotubes in polymer nanocompositescitations
  • 2009CFRP-recycling following a pyrolysis route : process optimization and potentialscitations
  • 2008Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites89citations
  • 2008Catalytically active CNT-polymer-membrane assemblies38citations

Places of action

Chart of shared publication
Liebig, Wilfried V.
3 / 29 shared
Smazna, Daria
6 / 9 shared
Chandrasekaran, Swetha
2 / 2 shared
Mecklenburg, Matthias
6 / 7 shared
Adelung, Rainer
10 / 120 shared
Fiedler, Bodo
7 / 39 shared
Mishra, Yogendra Kumar
4 / 53 shared
Wittich, Hans
1 / 3 shared
Brouschkin, Alexander
1 / 8 shared
Roth, Mikko Julian
1 / 1 shared
Marx, Janik
2 / 9 shared
Treekamol, Yaowapa
1 / 2 shared
Schieda, Mauricio
1 / 2 shared
Garlof, Svenja
3 / 4 shared
Kürten, Jonas
1 / 1 shared
Philipkowski, Timo
1 / 1 shared
Schütt, Martin
1 / 1 shared
Leopold, Christian
1 / 3 shared
Timmermann, Jens
1 / 1 shared
Fukuda, Taro
1 / 1 shared
Mishra, Prof. Yogendra Kumar
1 / 41 shared
Raevschi, Simion
2 / 4 shared
Braniste, Tudor
2 / 7 shared
Kienle, Lorenz
2 / 52 shared
Deng, Mao
2 / 5 shared
Schuchardt, Arnim
2 / 5 shared
Stevens-Kalceff, Marion A.
2 / 2 shared
Tiginyanu, Ion
2 / 16 shared
Müller, Michael T.
1 / 3 shared
Krause, Beate
2 / 89 shared
Buschhorn, Samuel T.
3 / 3 shared
Villmow, Tobias
2 / 7 shared
Pötschke, Petra
2 / 330 shared
Köpke, Ulf
1 / 1 shared
Pegel, Sven
1 / 4 shared
Kasaliwal, Gaurav R.
1 / 1 shared
Sumfleth, Jan
1 / 1 shared
Wichmann, Malte H. G.
2 / 2 shared
Göldel, Andreas
1 / 2 shared
Grove-Nielsen, Erik
1 / 1 shared
Meyer, Leif Ole
1 / 1 shared
Böger, Lars
1 / 1 shared
Nunes, Suzana P.
1 / 8 shared
Prehn, Kirsten
1 / 1 shared
Heinen, Martin
1 / 1 shared
Chart of publication period
2019
2018
2017
2016
2015
2013
2011
2009
2008

Co-Authors (by relevance)

  • Liebig, Wilfried V.
  • Smazna, Daria
  • Chandrasekaran, Swetha
  • Mecklenburg, Matthias
  • Adelung, Rainer
  • Fiedler, Bodo
  • Mishra, Yogendra Kumar
  • Wittich, Hans
  • Brouschkin, Alexander
  • Roth, Mikko Julian
  • Marx, Janik
  • Treekamol, Yaowapa
  • Schieda, Mauricio
  • Garlof, Svenja
  • Kürten, Jonas
  • Philipkowski, Timo
  • Schütt, Martin
  • Leopold, Christian
  • Timmermann, Jens
  • Fukuda, Taro
  • Mishra, Prof. Yogendra Kumar
  • Raevschi, Simion
  • Braniste, Tudor
  • Kienle, Lorenz
  • Deng, Mao
  • Schuchardt, Arnim
  • Stevens-Kalceff, Marion A.
  • Tiginyanu, Ion
  • Müller, Michael T.
  • Krause, Beate
  • Buschhorn, Samuel T.
  • Villmow, Tobias
  • Pötschke, Petra
  • Köpke, Ulf
  • Pegel, Sven
  • Kasaliwal, Gaurav R.
  • Sumfleth, Jan
  • Wichmann, Malte H. G.
  • Göldel, Andreas
  • Grove-Nielsen, Erik
  • Meyer, Leif Ole
  • Böger, Lars
  • Nunes, Suzana P.
  • Prehn, Kirsten
  • Heinen, Martin
OrganizationsLocationPeople

article

Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy composites

  • Smazna, Daria
  • Mishra, Yogendra Kumar
  • Mecklenburg, Matthias
  • Adelung, Rainer
  • Garlof, Svenja
  • Fiedler, Bodo
  • Fukuda, Taro
  • Schulte, Karl
Abstract

<p>Aerographite (AG) is a carbon aerogel consisting of three-dimensionally (3D) interconnected graphitic microtubes. This study characterizes the electrical and mechanical properties of Aerographite/epoxy composites under tensile load. Aerographite can be used as a highly tailorable filler in polymer nanocomposites (PNCs) where the carbon filler and the matrix form an interpenetrating structure, contrary to particle filled systems. Aerographite networks with densities ranging from 3.0 to 13.9 mg/cm<sup>3</sup> were produced in a chemical vapour deposition (CVD) process. An infiltration with epoxy leads to Aerographite/epoxy composites with filler contents in the range of 0.26–1.24 wt%. Their electrical conductivity is in the range of 2–13.6 S/m, thus, orders of magnitude higher compared to CNT-based PNCs at comparable filler contents. Although a large amount of direct interconnections of the graphitic tubes is given, interestingly the Aerographite/epoxy composites show a piezoresistive behaviour comparable to PNCs filled with carbon nanotubes (CNT) or graphene. Unexpected shifts between external mechanical strain and electrical signal have been observed in incremental piezoresistive experiments. Young's moduli and tensile strengths of the PNCs are not affected by embedding Aerographite networks. Fractographic observations identify graphitic wall slippage as the dominating failure mechanism. Both, piezoresistive characterization and fractography studies have been correlated and a model for the observed piezoresistive response is derived.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • Carbon
  • experiment
  • nanotube
  • strength
  • tensile strength
  • electrical conductivity
  • chemical vapor deposition
  • fractography