People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Bing
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2018COUPON SCALE MODELLING OF THE BRIDGING MECHANICS OF HIGH-RATE LOADED Z-PINS
- 2016An Experimental Investigation into Multi-Functional Z-pinned Composite Laminatescitations
- 2016On the delamination self-sensing function of Z-pinned composite laminatescitations
- 2015Through-thickness sensing of single Z-pin reinforced composite laminates
- 2015Micro-mechanical finite element analysis of Z-pins under mixed-mode loadingcitations
Places of action
Organizations | Location | People |
---|
article
On the delamination self-sensing function of Z-pinned composite laminates
Abstract
This paper investigates for the first time the usage of through-thickness reinforcement for delamination detection in self-sensing composite laminates. Electrically conductive T300/BMI Z-pins are considered in this study. The through-thickness electrical resistance is measured as the delamination self-sensing variable, both for conductive and non-conductive laminates. The Z-pin ends are connected to a resistance measurement circuit via electrodes arranged on the surface of the laminate. The delamination self-sensing function enabled by conductive Z-pins is characterised for Mode I/II delamination bridging, using single Z-pin coupons. Experiment results show that, if the through-thickness reinforced laminate is electrically conductive, the whole Z-pin pull-out process associated with delamination bridging can be monitored. However, for a non-conductive laminate, delamination bridging may not be sensed after the Z-pin is pulled out from one of the surface electrodes. Regardless of the electrical properties of the reinforced laminate, the through-thickness electrical resistance is capable of detecting Mode II bridging, albeit there exists an initial “blind spot” at relatively small lateral deformation. However, the Z-pin rupture can be clearly detected as an abrupt resistance increase. This study paves the way for exploring multi-functional applications of through-thickness reinforcement.