People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mouritz, Adrian P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Bioinspired design optimization for pseudo-ductility in platelet fibre laminatescitations
- 2019Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy compositescitations
- 2018Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillerscitations
- 2018Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplateletscitations
- 2017Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capabilitycitations
- 2017Porous PDMS/CNFS composites for stretchable strain sensors
- 2017Alignment of nano and micron diameter carbon fillers in epoxy via electric field
- 2017Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibrescitations
- 2017Ductility of platelet composites inspired by nacre design
- 2017Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite jointscitations
- 2017Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductorscitations
- 2016A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocompositescitations
- 2016Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carboncitations
- 2015Disbond monitoring of adhesive joints reinforced with carbon nanofibres
- 2015Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocompositescitations
- 2015Epoxy nanocomposites with aligned carbon nanofillers by external electric fields
- 2015Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibrescitations
Places of action
Organizations | Location | People |
---|
article
Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibres
Abstract
<p>There is an increasing demand for high performance composites with enhanced mechanical and electrical properties. Carbon nanofibres offer a promising solution but their effectiveness has been limited by difficulty in achieving directional alignment. Here we report the use of an alternating current (AC) electric field to align carbon nanofibres in an epoxy. During the cure process of an epoxy resin, carbon nanofibres (CNFs) are observed to rotate and align with the applied electric field, forming a chain-like structure. The fracture energies of the resultant epoxy nanocomposites containing different concentrations of CNFs (up to 1.6wt%) are measured using double cantilever beam specimens. The results show that the addition of 1.6wt% of aligned CNFs increases the electrical conductivity of such nanocomposites by about seven orders of magnitudes to 10<sup>-2</sup>S/m and increases the fracture energy, G<sub>Ic</sub>, by about 1600% from 134 to 2345J/m<sup>2</sup>. A modelling technique is presented to quantify this major increase in the fracture energy with aligned CNFs. The results of this research open up new opportunities to create multi-scale composites with greatly enhanced multifunctional properties.</p>