People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marguerès, Philippe
Institut Clément Ader
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024An innovative and low-cost system for in situ and real-time cure monitoring using electrical impedancemetry for thermoset and CFRP laminatecitations
- 2020Carbon fibres reinforced composites. Electrical impedance analysis: a gateway to smartnesscitations
- 2019Pixel Coloring modelling of PEKK crystallization
- 2019Nanocomposites, nanofilled matrices composites: manufacturing conditions and properties
- 2018Modelling the electrical behaviour of carbon/epoxy composites and monitoring changes in their microstructure during oven and autoclave curing using electrical impedancemetrycitations
- 2017Damage of woven composite under translaminar cracking tests using infrared thermographycitations
- 2016Détermination des paramètres géométriques pour la caractérisation électrique d’un composite T700/M21 en cours de cuissoncitations
- 2016Determination of anisotropic geometrical parameters for the electrical characterization of carbon/epoxy composite during oven curing
- 2016Determination of anisotropic geometrical parameters for the electrical characterization of carbon/epoxy composite during oven curing
- 2015Measure of fracture toughness of compressive fiber failure in composite structures using infrared thermographycitations
- 2015CURE MONITORING AND SHM OF CARBON FIBER REINFORCED POLYMER PART II : MULTI-PHYSICAL CORRELATIONS
- 2015Cure Monitoring and SHM of Carbon Fiber Reinforced Polymer Part I : Impedance Analysis and Multiphysic Sensitivity
- 2015Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cutscitations
- 2014An experimental study of damage evolution in 2D thin woven composite under quasi-static loading using infrared thermography
- 2014Measuring volumetric micro-scale displacements of a composite using a PGD-Based DVC
- 2014Measuring volumetric micro-scale displacements of a composite using a PGD-Based DVC
- 2014Cure Monitoring and SHM of Carbon Fiber Reinforced Polymer Part II : Multi-Physical Correlations
- 2014Cure Monitoring and SHM of Carbon Fiber Reinforced Polymer Part I : Impedance Analysis and Multiphysic Sensitivity
- 2013Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermographycitations
- 2013Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermographycitations
- 2013Damage induced anisotropy and stiffness reduction evaluation in composite materials using ultrasonic wave transmissioncitations
- 2013Étude expérimentale de l’endommagement d’un composite tissé mince sous traction quasi-statique via thermographie infrarouge
- 2013Étude expérimentale de l’endommagement d’un composite tissé mince sous traction quasi-statique via thermographie infrarouge
- 2012Damage assessment of thin woven composite subjected to quasi-static tensile loading using infrared thermography
- 2012Damage assessment of thin woven composite subjected to quasi-static tensile loading using infrared thermography
- 2006STUDY FOR MANUFACTURNG A CORNER FITTING OBTAINED BY RESIN FILM INFUSION PROCESS
- 2005CHARACTERISATION OF A COMPOSITE STRUCTURE OBTAINED BY RFI USING HEXFIT ® SEMI PRODUCT
Places of action
Organizations | Location | People |
---|
article
Measure of fracture toughness of compressive fiber failure in composite structures using infrared thermography
Abstract
International audience ; Fracture toughness is one of the most important properties of any material for a lot of design applications involving damage and crack growth. Unfortunately, its value can be difficult to evaluate with standard methods such as the ‘‘compliance’’ method. In this work, two special cases have been studied and infrared thermography has been used to overcome the limitations of conventional methods.Compressive fiber failure in unidirectional composite laminate has been chosen due to its difficulty to evaluate toughness. Infrared thermography has been employed to follow compressive failure mode developing during an indentation test and a compression after impact test, and to evaluate the fracture toughness of compressive fiber failure. The obtained results show a good correspondence with the value found in a previous work on FE analysis of impact damage and are consistent with the literature.