Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yoo, Shin-Sung

  • Google
  • 1
  • 8
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films58citations

Places of action

Chart of shared publication
Thangavel, Elangovan
1 / 1 shared
Ito, Eisuke
1 / 2 shared
Ramasundaram, Subramaniyan
1 / 3 shared
Lee, Sang Yun
1 / 1 shared
Kim, Dae-Eun
1 / 2 shared
Hong, Seok Won
1 / 1 shared
Kang, Yong Soo
1 / 9 shared
Pitchaimuthu, Sudhagar
1 / 38 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Thangavel, Elangovan
  • Ito, Eisuke
  • Ramasundaram, Subramaniyan
  • Lee, Sang Yun
  • Kim, Dae-Eun
  • Hong, Seok Won
  • Kang, Yong Soo
  • Pitchaimuthu, Sudhagar
OrganizationsLocationPeople

article

Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films

  • Thangavel, Elangovan
  • Ito, Eisuke
  • Ramasundaram, Subramaniyan
  • Lee, Sang Yun
  • Kim, Dae-Eun
  • Hong, Seok Won
  • Kang, Yong Soo
  • Pitchaimuthu, Sudhagar
  • Yoo, Shin-Sung
Abstract

<p>The possibility of engineering the crystalline structure and tribological properties of poly(vinylidene fluoride) (PVDF) thin films (300. nm) using functionalized graphene oxide (FGO) was evaluated. Samples with 0.0, 0.5, 1.0, and 2.0. wt% FGO in the feed were spin cast on Si-wafer, characterized by X-ray photoelectron (XPS), Fourier-transform infrared and Raman spectroscopies, atomic force and scanning electron microscopies, and tribological analyses. XPS and Raman studies were confirmed the incorporation of FGO into the PVDF matrix. PVDF predominantly contained the α-phase. FGO suppressed the growth of the α-phase and favored the formation of the ferroelectric β- and γ-phases. The surface topography changed from featureless to spherulites with or without well-grown dendrites upon FGO incorporation. In case of tribological characteristics, when a 10. mN normal load was applied in a reciprocating motion, the bare Si-wafer, PVDF, and PVDF-FGO-2.0 showed substantial damage after 50, 125, and 50 cycles, respectively. PVDF-FGO-0.5 was very stable even after 120 cycles whereas PVDF-FGO-1.0 showed mild abrasion.</p>

Topics
  • nanocomposite
  • surface
  • phase
  • thin film
  • x-ray photoelectron spectroscopy