People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schulte, Karl
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2019Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy compositecitations
- 2018Fundamentals of the temperature-dependent electrical conductivity of a 3D carbon foam—Aerographite
- 2018Thermomechanical characteristics of ODF-silica Nafion® nanocomposite for PEMFCs application
- 20173D carbon networks and their polymer compositescitations
- 2017Compression fracture of CFRP laminates containing stress intensifications
- 2017Growth model of a carbon based 3D structure (Aerographite) and electrical/mechanical properties of composites
- 2016Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy compositecitations
- 2016Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy compositescitations
- 2015Three-dimensional Aerographite-GaN hybrid networkscitations
- 2015Three-dimensional Aerographite-GaN hybrid networks: single step fabrication of porous and mechanically flexible materials for multifunctional applications
- 2013Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperaturescitations
- 2011Characterization of the state of dispersion of carbon nanotubes in polymer nanocomposites
- 2009CFRP-recycling following a pyrolysis route : process optimization and potentials
- 2008Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocompositescitations
- 2008Catalytically active CNT-polymer-membrane assembliescitations
Places of action
Organizations | Location | People |
---|
article
Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures
Abstract
The paper reports the effect of using of a three roll mill as additional dispersion step after twin-screw melt extrusion of nanocomposites containing thermoplastic polymers and multiwalled carbon nanotubes. The three roll milling technology was adapted to elevated temperatures of up to 180 °C and examples are shown for its use in processing of different pre-compounded thermoplastic polymer composites based on polypropylene, polycaprolactone and ethylene-vinyl acetate. The aim is to enhance the state of dispersion achieved by the previous melt extrusion step. In particular, depending on the state of dispersion before three roll milling and the adapted conditions, like number of runs and gap sizes, a reduction of number and size of remaining primary nanotube agglomerates was found. This was studied using light microscopy. The resulting improvements in mechanical properties were assessed and could be attributed to the improved dispersion. In some cases agglomerate free samples could be achieved after the three roll milling process. © 2012 Elsevier Ltd. ; acceptedVersion