People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcafee, Marion
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Embedding a surface acoustic wave sensor and venting into a metal additively manufactured injection mould tool for targeted temperature monitoringcitations
- 2024Sensorised metal AM injection mould tools for in-process monitoring of cooling performance with conventional and conformal cooling channel designscitations
- 2024Investigation of the effect of Graphene oxide concentration on the final properties of Aspirin loaded PLA filaments for drug delivery systems
- 2023Enhancement of biodegradability of polylactides by γ-ray irradiation
- 2023Interpretable machine learning methods for monitoring polymer degradation in extrusion of polylactic acidcitations
- 2021Comparison of data summarization and feature selection techniques for in-process spectral datacitations
- 2018A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithmscitations
- 2014The application of computational chemistry and chemometrics to developing a method for online monitoring of polymer degradation in the manufacture of bioresorbable medical implants
- 2012Water spray cooling of polymerscitations
- 2012Dynamic grey-box modeling for online monitoring of extrusion viscositycitations
- 2011The inferential monitoring of screw load torque to predict process fluctuations in polymer extrusioncitations
- 2011The inferential monitoring of the screw disturbance torque to predict process fluctuations in polymer extrusioncitations
- 2011Internal cooling in rotational molding-A reviewcitations
- 2011Quantitative characterization of clay dispersion in polymer-clay nanocompositescitations
- 2010Quantitative characterization of clay dispersion in polypropylene-clay nanocomposites by combined transmission electron microscopy and optical microscopy
- 2010Quantitative characterization of clay dispersion in polypropylene-clay nanocomposites by combined transmission electron microscopy and optical microscopycitations
- 2010Structure-property relationships in biaxially deformed polypropylene nanocompositescitations
- 2007Enhancing process insight in polymer extrusion by grey box modellingcitations
- 2007A novel approach to dynamic modelling of polymer extrusion for improved process controlcitations
- 2007A Soft Sensor for viscosity control of polymer extrusioncitations
- 2006Energy efficient extrusion
- 2003Design of a soft sensor for polymer extrusion
Places of action
Organizations | Location | People |
---|
article
Structure-property relationships in biaxially deformed polypropylene nanocomposites
Abstract
Semi-solid forming processes such as thermoforming and injection blow moulding are used to make much of today’s packaging. As for most packaging there is a drive to reduce product weight and improve properties such as barrier performance. Polymer nanocomposites offer the possibility of increased modulus (and hence potential product light weighting) as well as improved barrier properties and are the subject of much research attention. In this particular study, polypropylene–clay nanocomposite sheets produced via biaxial deformation are investigated and the structure of the nanocomposites is quantitatively determined in order to gain a better understanding of the influence of the composite structure on mechanical properties. Compression moulded sheets of polypropylene and polypropylene/Cloisite 15A nanocomposite (5 wt.%) were biaxially stretched to different stretching ratios, and then the structure of the nanocomposite was examined using XRD and TEM techniques. Different stretching ratios produced different degrees of exfoliation and orientation of the clay tactoids. The sheet properties were then investigated using DSC, DMTA, and tensile tests .It was found that regardless of the degree of exfoliation or orientation, the addition of clay has no effect on percentage crystallinity or melting temperature, but it has an effect on the crystallization temperature and on the crystal size distribution. DMTA and tensile tests show that both the degree of exfoliation and the degree of orientation positively correlate with the dynamic mechanical properties and the tensile properties of the sheet.