Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Celuch, Małgorzata

  • Google
  • 1
  • 3
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Dielectric properties of chiral honeycombs – Modelling and experiment22citations

Places of action

Chart of shared publication
Kopyt, Paweł
1 / 13 shared
Damian, Radu
1 / 1 shared
Ciobanu, Romeo
1 / 3 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Kopyt, Paweł
  • Damian, Radu
  • Ciobanu, Romeo
OrganizationsLocationPeople

article

Dielectric properties of chiral honeycombs – Modelling and experiment

  • Celuch, Małgorzata
  • Kopyt, Paweł
  • Damian, Radu
  • Ciobanu, Romeo
Abstract

Electromagnetic properties of mechanically chiral honeycomb structures are investigated. In extension to previous works on the subject, rigorous analysis is performed above the quasi-static frequency range. Theoretical considerations and full wave 3D electromagnetic simulations are conducted to prove that, for the honeycombs of interest, higher order harmonics due to structure periodicity are attenuated away from the panel surface at frequencies up to several GHz, which covers a number of popular ISM bands. As a consequence, only individual plane TEM waves are observable at practical locations of transmitters and receivers away from the panel. Under the same conditions, it is demonstrated that the structural chirality does not translate into chiral electromagnetic behaviour. In other words, orthogonal modes of the honeycomb scenarios are linearly polarised, and transformation of the electromagnetic energy into heat occurs purely as a result of classical conductivity or loss tangent, which are low for the low-density panels made of low-loss dielectric cores. This indicates that EMC or shielding characteristics can only be designed either by utilizing the phenomenon of wave reflections, or by equipping the panels with additional foils on surfaces or absorbing foams in air volumes. While precise measurements of final-sized honeycomb panels remain as a challenging task for further work, preliminary experiments have been performed showing good agreement with theoretical and computed predictions.

Topics
  • density
  • impedance spectroscopy
  • surface
  • experiment
  • simulation
  • transmission electron microscopy