People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Katsivalis, Ioannis
Chalmers University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Hydrogen permeability of thin-ply composites after mechanical loadingcitations
- 2024Fatigue performance and damage characterisation of ultra-thin tow-based discontinuous tape compositescitations
- 2024Strength analysis and failure prediction of thin tow-based discontinuous compositescitations
- 2024Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2024A 3D voxel-based mesostructure generator for finite element modelling of tow-based discontinuous compositescitations
- 2023Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2022Multilayer leading edge protection systems of wind turbine blades
- 2022Multilayer leading edge protection systems of wind turbine blades:A review of material technology and damage modelling
- 2022Multilayer Leading Edge Protection Systems of Wind Turbine Blades. A Review of Material Technology and Damage Modelling
- 2022Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applicationscitations
- 2022Multilayer Leading Edge Protection systems of Wind Turbine Blades: A review of material technology and damage modelling
- 2020Development of cohesive zone models for the prediction of damage and failure of glass/steel adhesive jointscitations
- 2019Failure prediction and optimal selection of adhesives for glass/steel adhesive jointscitations
- 2018Strength evaluation and failure prediction of bolted and adhesive glass/steel jointscitations
Places of action
Organizations | Location | People |
---|
article
Fatigue performance and damage characterisation of ultra-thin tow-based discontinuous tape composites
Abstract
<p>Tow-based discontinuous composites are an attractive alternative material to conventional continuous composites as they offer in-plane isotropy, enhanced manufacturability allowing to achieve complex 3D shapes with high curvatures and local reinforcement in critical areas, while also maintaining high strength and stiffness, therefore expanding the design space significantly. In addition, the use of ultra-thin tapes and optimised manufacturing methods can increase the mechanical properties even further and change the damage mechanisms. Fatigue, however, could be a limiting design factor, as the fatigue behaviour of these materials has not been fully characterised. This work presents a complete study on the fatigue response of ultra-thin tow-based discontinuous composites: fatigue S–N curves are measured, and the damage and failure mechanisms are characterised utilising optical and scanning electron microscopy. Finally, a critical interpretation of the results is also presented by comparing the performance of ultra-thin tow-based discontinuous composites against other similar fibre reinforced composites and metals. It is shown that the optimised manufacturing methods combined with low tape thickness leads to enhanced quasi-isotropic fatigue performance. In addition, the fatigue limit was raised significantly compared to other discontinuous composites, and the tow-based discontinuous composites outperformed their metal counterparts when the results were normalised with density.</p>