People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Völkerink, Oliver
Technische Universität Braunschweig
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Local Surface Toughening – A boltless crack stopping technology for aerospace structures
- 2024Validation of static residual strength analyses of fiber composite bonded joints
- 2023Comparison of Continuum Shell and Solid Element-Based Modeling Strategies for Mesoscale Progressive Damage Analysis of Fiber Compositescitations
- 2023Effect of low temperature on mode I and mode II interlaminar fracture toughness of CFRP-steel hybrid laminatescitations
- 2022Polyetherimide-Reinforced Smart Inlays for Bondline Surveillance in Composites
Places of action
Organizations | Location | People |
---|
article
Effect of low temperature on mode I and mode II interlaminar fracture toughness of CFRP-steel hybrid laminates
Abstract
Delamination is the dominant failure type in fiber metal laminates (FML), particularly when combining carbon fiber reinforced plastics (CFRP) with steel. Their interface behavior is frequently studied using the double cantilever beam (DCB) and end-notched flexure (ENF) setup for mode I and mode II delamination, respectively. By nature, analysis of hybrid interfaces requires asymmetric laminate layups. Thus, thermal residual stresses (TRS) are acting on the interfaces. A framework for the correction of the apparent fracture toughness from experimental testing and for accurate numerical modeling is provided. The approach is validated using DCB and ENF test results at -55 °C and 23 °C. The results demonstrate the necessity of incorporating TRS in the analysis of asymmetric CFRP-steel FMLs, i.e. including a temperature step and using the true fracture toughness value as simulation input. Otherwise, delamination onset is mispredicted by up to 29 %.