Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Völkerink, Oliver

  • Google
  • 5
  • 10
  • 22

Technische Universität Braunschweig

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Local Surface Toughening – A boltless crack stopping technology for aerospace structurescitations
  • 2024Validation of static residual strength analyses of fiber composite bonded jointscitations
  • 2023Comparison of Continuum Shell and Solid Element-Based Modeling Strategies for Mesoscale Progressive Damage Analysis of Fiber Composites3citations
  • 2023Effect of low temperature on mode I and mode II interlaminar fracture toughness of CFRP-steel hybrid laminates19citations
  • 2022Polyetherimide-Reinforced Smart Inlays for Bondline Surveillance in Compositescitations

Places of action

Chart of shared publication
Schollerer, Martin
2 / 2 shared
Holzhüter, Dirk
2 / 2 shared
Kosmann, Jens
2 / 4 shared
Makiela, Patrick Adrian
2 / 2 shared
Hühne, Christian
5 / 27 shared
Koord, Josef
2 / 6 shared
Dietzel, Andreas
1 / 15 shared
Steinmetz, Julian
1 / 1 shared
Makiela, Patrick
1 / 1 shared
Sinapius, Michael
1 / 36 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Schollerer, Martin
  • Holzhüter, Dirk
  • Kosmann, Jens
  • Makiela, Patrick Adrian
  • Hühne, Christian
  • Koord, Josef
  • Dietzel, Andreas
  • Steinmetz, Julian
  • Makiela, Patrick
  • Sinapius, Michael
OrganizationsLocationPeople

article

Effect of low temperature on mode I and mode II interlaminar fracture toughness of CFRP-steel hybrid laminates

  • Völkerink, Oliver
  • Hühne, Christian
  • Koord, Josef
Abstract

Delamination is the dominant failure type in fiber metal laminates (FML), particularly when combining carbon fiber reinforced plastics (CFRP) with steel. Their interface behavior is frequently studied using the double cantilever beam (DCB) and end-notched flexure (ENF) setup for mode I and mode II delamination, respectively. By nature, analysis of hybrid interfaces requires asymmetric laminate layups. Thus, thermal residual stresses (TRS) are acting on the interfaces. A framework for the correction of the apparent fracture toughness from experimental testing and for accurate numerical modeling is provided. The approach is validated using DCB and ENF test results at -55 °C and 23 °C. The results demonstrate the necessity of incorporating TRS in the analysis of asymmetric CFRP-steel FMLs, i.e. including a temperature step and using the true fracture toughness value as simulation input. Otherwise, delamination onset is mispredicted by up to 29 %.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • simulation
  • steel
  • fracture toughness