Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lines, Dave

  • Google
  • 1
  • 2
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Fibre volume fraction screening of pultruded carbon fibre reinforced polymer panels based on analysis of anisotropic ultrasonic sound velocity13citations

Places of action

Chart of shared publication
Duernberger, Euan
1 / 1 shared
Macleod, Charles N.
1 / 45 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Duernberger, Euan
  • Macleod, Charles N.
OrganizationsLocationPeople

article

Fibre volume fraction screening of pultruded carbon fibre reinforced polymer panels based on analysis of anisotropic ultrasonic sound velocity

  • Duernberger, Euan
  • Lines, Dave
  • Macleod, Charles N.
Abstract

Composites have become the material of choice in a wide range of manufacturing applications. Whilst ultrasound inspection is a well-established non-destructive testing (NDT) technique, the application to composite imaging presents significant challenges stemming from the inherent anisotropy of the material. The fibre-volume fraction (FVF) of a composite plays a key role in determining the final strength and stiffness of a part as well as influencing the ultrasonic bulk velocity. In this work, a novel FVF determination technique, based on the angular dependence of the sound velocity with respect to the composite fibre direction, is presented. This method is introduced and validated by inspection of pultruded carbon fibre reinforced polymer (CFRP) panels commonly used in the manufacture of high-power wind turbine blades. Full matrix capture (FMC) data acquired from a phased array (PA) ultrasonic probe is used to generate calibration data for samples ranging in FVF from 60.5 % to 69.9 %.Sample velocity, as a function of propagation angle, is used to estimate the FVF of samples and ensure they fall within the desired range. Experimental results show values of 61.1, 66.1 and 68.3 %, comparing favourably to the known values of 60.5, 66.3 and 69.9 % respectively. The work offers significant potential in terms of factory implementation of NDT procedures to ensure final parts satisfy standards and certification by ensuring any FVF inconsistencies are identified as early in the manufacturing process as possible.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • strength
  • anisotropic
  • composite
  • ultrasonic