People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmadi, Hossein
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024A numerical multi-scale method for analyzing the rate-dependent and inelastic response of short fiber reinforced polymers : modeling framework and experimental validationcitations
- 2023Predicting the elasto-plastic response of short fiber reinforced composites using a computationally efficient multi-scale framework based on physical matrix propertiescitations
- 2023Closed-form analytical solutions for predicting stress transfers and thermo-elastic properties of short fiber compositescitations
- 2022A variational approach for accurate prediction of stress and displacement fields and thermo-elastic constants in general symmetric laminates containing ply cracking and delamination under general triaxial loadingcitations
- 2022A computationally efficient multi-scale strategy for predicting the elasto-plastic behaviour of short fiber composites
- 2022A hierarchical multi-scale analytical approach for predicting the elastic behavior of short fiber reinforced polymers under triaxial and flexural loading conditionscitations
- 2020Variational analysis of cracking in general composite laminates subject to triaxial and bending loadscitations
- 2020Closed-form formulae for prediction of homogenized ply-properties and laminate thermo-elastic constants in symmetric laminates containing ply cracks in multiple orientationscitations
Places of action
Organizations | Location | People |
---|
article
Predicting the elasto-plastic response of short fiber reinforced composites using a computationally efficient multi-scale framework based on physical matrix properties
Abstract
Predicting the nonlinear mechanical response of short fiber reinforced composites (SFRCs) is a crucial and challenging task. In this paper, a computationally efficient multi-scale strategy is proposed to predict the anisotropic elasto-plastic behavior of SFRCs using the intrinsic mechanical behavior of the pure polymer and fibers without the requirements for reverse engineering. In doing so, different simple unit cells are first examined to find the one that can adequately describe the nonlinear mechanical response of SFRCs' representative volume elements (RVE) with aligned fibers. Considering the effects of packing configuration, fiber aspect ratio, volume fraction and material properties, the performance of different unit cells is investigated. Then, the homogenized mechanical responses of unit cells are linked to Hill's anisotropic plasticity model to correlate the mechanical response of the suggested unit cell to the continuum domain. Using the pseudo-grain approach and a numerical orientation averaging framework, the effects of fiber misalignment are taken into account. A multi-step homogenization strategy is also employed to consider the variation of fiber orientation tensor and volume fraction through the thickness. Finally, the validity and robustness of the proposed multi-scale strategy are extensively investigated based on the RVE-generated results and the available experimental observations.