People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Parnell, William J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Deeply subwavelength giant monopole elastodynamic metacluster resonators
- 2022A unified framework for linear thermo-visco-elastic wave propagation including the effects of stress-relaxationcitations
- 2022Transition from equatorial to whole-shell buckling in embedded spherical shells under axisymmetric far-field loadingcitations
- 2022Enhanced elastodynamic resonance via co-dipole metaclusterscitations
- 2021Geometrical and Mechanical Characterisation of Hollow Thermoplastic Microspheres for Syntactic Foam Applicationscitations
- 2019Soft metamaterials with dynamic viscoelastic functionality tuned by pre-deformationcitations
- 2018Thermo-viscous damping of acoustic waves in narrow channels: A comparison of effects in air and water.
- 2018Thermo-viscous damping of acoustic waves in narrow channels: a comparison of effects in air and watercitations
- 2018The inflation of viscoelastic balloons and hollow visceracitations
- 2018The inflation of viscoelastic balloons and hollow visceracitations
- 2018Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructurecitations
- 2015Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material
- 2013Predicting the pressure-volume curve of an elastic microsphere compositecitations
- 2013Predicting the pressure-volume curve of an elastic microsphere compositecitations
- 2012Employing pre-stress to generate finite cloaks for antiplane elastic wavescitations
- 2012Homogenization methods to approximate the effective response of random fibre-reinforced Compositescitations
- 2012Nonlinear pre-stress for cloaking from antiplane elastic wavescitations
- 2011The effective wavenumber of a pre-stressed nonlinear microvoided compositecitations
- 2009The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenizationcitations
- 2008Homogenization for wave propagation in periodic fibre-reinforced media with complex microstructure. I-Theorycitations
- 2007Effective wave propagation in a prestressed nonlinear elastic composite barcitations
Places of action
Organizations | Location | People |
---|
report
Geometrical and Mechanical Characterisation of Hollow Thermoplastic Microspheres for Syntactic Foam Applications
Abstract
Recently, hollow thermoplastic microspheres, such as Expancel made by Nouryon, have emerged as an innovative filler material for use in polymer-matrix composites. The resulting all-polymer syntactic foam takes on excellent damage tolerance properties, strong recoverability under large strains, and favourable energy dissipation characteristics. Despite finding increasing usage in various industries and applications, including in coatings, films, sealants, packaging, composites for microfluidics, medical ultrasonics and cementious composites, there is a near-complete absence of statistical geometrical information for Expancel microspheres. Further, their mechanical properties have not yet been reported. In this work we characterise the geometrical quantities of two classes of Expancel thermoplastic microspheres using X-ray computed tomography, focused ion beam and electron microscopy. We also observe the spatial distribution of microspheres within a polyurethane-matrix syntactic foam. We show that the volume-weighted polydisperse shell diameter in both classes of microsphere follows a normal distribution. Interestingly, polydispersity of the shell wall thickness is not observed and in particular the shell thickness is not correlated to the shell diameter. We employ the measured geometrical information in analytical micromechanical techniques in the small strain regime to determine, for the first time, estimates of the Young's modulus and Poisson's ratio of the microsphere shell material. Our results contribute to potential future improvements in the design and fabrication of syntactic foams that employ thermoplastic microspheres. Given the breadth of fields which utilise thermoplastic microspheres, we anticipate that our results, together with the methods used, will be of use in a much broader context in future materials research.