Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ghossein, Hicham

  • Google
  • 1
  • 5
  • 86

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications86citations

Places of action

Chart of shared publication
Hiremath, Nitilaksha
1 / 1 shared
Penumadu, Dayakar
1 / 8 shared
Vaidya, Uday
1 / 3 shared
Young, Stephen
1 / 2 shared
Theodore, Merlin
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Hiremath, Nitilaksha
  • Penumadu, Dayakar
  • Vaidya, Uday
  • Young, Stephen
  • Theodore, Merlin
OrganizationsLocationPeople

article

Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications

  • Hiremath, Nitilaksha
  • Ghossein, Hicham
  • Penumadu, Dayakar
  • Vaidya, Uday
  • Young, Stephen
  • Theodore, Merlin
Abstract

Carbon fiber reinforced polymer composites are highly desirable for automotive and wind energy applications due to advantages associated with weight reduction, high stiffness and strength, durability, and recyclability. The high cost of carbon fiber has been a limiting factor in its widespread adoption in non-aerospace applications. A low cost (estimated < $11 per kg) wide tow (450-600k) carbon fiber derived from textile grade polyacrylonitirile precursor, and hence called Textile Grade Carbon Fiber (TCF) is introduced in this paper. Fundamental aspects of the TCF are discussed along with a detailed characterization of its mechanical properties. Two manufacturing processes relevant to automotive and wind energy applications are considered, namely-compression molding and resin infusion. Furthermore, at various stages the TCF has been compared to commercial non-aerospace 50k carbon fiber composite. Detailed physical and mechanical properties including tensile, flexural, compression, and interlaminar shear properties are reported and compared to non-aerospace carbon fiber composite. The results provide a means for designers and end-users in the automotive and wind energy sector to consider different forms of economical non-aerospace carbon fibers.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • strength
  • composite
  • durability
  • resin
  • compression molding