People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Quinn, Justin
University of Ulster
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regimecitations
- 2021A Simplified Thermal Approximation Method to include the effects of Marangoni Convection in the melt pools of processes that involve moving point heat sourcescitations
- 2021Analysis of spatter removal by sieving during a powder-bed fusion manufacturing campaign in grade 23 titanium alloycitations
- 2021Comparison of Properties and Bead Geometry in MIG and CMT Single Layer Samples for WAAM Applicationscitations
- 2021Thread-stripping test procedures leading to factors of safety data for friction-drilled holes in thin-section aluminium alloycitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2020Reuse of grade 23 Ti6Al4V powder during the laser-based powder bed fusion processcitations
- 2018A Review of Powder Bed Fusion for Additively Manufactured Ti-6wt.%Al-4wt.%V
- 2018A REVIEW OF THERMAL MODELLING FOR METAL ADDITIVE MANUFACTURING PROCESSES: BASIC ANALYTICAL MODELS TO STATE-OF-THE-ART SOFTWARE PACKAGES.
- 2010Analytical Elastic Stiffness Model for 3D Woven Orthogonal Interlock Compositescitations
Places of action
Organizations | Location | People |
---|
article
Improved crush energy absorption in 3D woven composites by pick density modification
Abstract
Although 3D woven composites have exceptional out-of-plane properties, there is a lack of understanding for these materials in crash application in automotive and aerospace industries. To encourage the use of 3D wovens in crashworthy automotive structures, knowledge must be gained so that designers can adjust the highly flexible weave parameters to create tailor-made performance materials. Here we show that fabric pick density causes large changes in progressive failure modes and associated energy absorption, particularly in the dynamic regime, where the quasi-static to dynamic energy absorption loss typical of composites is completely removed. Compression and flexure properties, which are known to be linked to crash performance in composites, are also investigated for these 3D woven layer-to-layer interlock carbon-epoxy composite structures. 3D fabric preforms are manufactured in three different pick densities: 4, 10 & 16 wefts/cm. With a constant warp density of 12 warps/cm from carbon fibres. Increasing the pick density improved specific energy absorption (SEA) even in relatively inefficient progressive failure modes like folding, which has not previously observed in composite materials. SEA values up to 104 J/g (quasi-static) and 93 J/g (dynamic) are recorded. This work shows that minor weft direction (transverse) weave changes can lead to sizeable improvements in warp direction (axial) energy absorption without fundamentally redesigning the weave architecture.