Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Osman, Mahmoud M.

  • Google
  • 1
  • 4
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications69citations

Places of action

Chart of shared publication
El-Danaf, Ehab A.
1 / 4 shared
Shazly, Mostafa
1 / 4 shared
Jamshidi, Parastoo
1 / 10 shared
Attallah, Moataz Moataz
1 / 96 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • El-Danaf, Ehab A.
  • Shazly, Mostafa
  • Jamshidi, Parastoo
  • Attallah, Moataz Moataz
OrganizationsLocationPeople

article

Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications

  • El-Danaf, Ehab A.
  • Shazly, Mostafa
  • Jamshidi, Parastoo
  • Attallah, Moataz Moataz
  • Osman, Mahmoud M.
Abstract

<p>A new proposed truss lattice metamaterial is introduced and compared with the conventional octet truss lattice (OTL) material with regards to specific energy absorption (SEA) and energy absorption efficiency (EAE). The proposed lattice architecture resembles the Face-Centered Cubic (FCC) metamaterial with a mesostructural unit cell with an aspect ratio of 1:1:2, referred to as the stretched cell lattice (SCL). SCL and OTL samples were fabricated from stainless steel 316L by selective laser melting (SLM). Quasi-static compression experiments on the SLM fabricated metamaterials revealed an unstable twisting deformation mode for the SCL, whereas a stable crushing behavior was observed for the OTL. SCL samples provided higher SEA and EAE than OTL by 26% and 17%, respectively. Additionally, it was shown analytically, numerically and experimentally that the yield strength of the proposed SCL is ~80% higher than that of the OTL metamaterials of the same base material and relative density. A hybrid composite lattice structure based on acrylic matrix and the additively manufactured microlattice metamaterials was produced to enhance the struts buckling resistance. The hybrid composite showed a 47% higher specific strength while the SEA and EAE dropped by 31.5% and 30.7%, respectively, when compared to the bare stainless steel microlattice. Dynamic compression experiments using Split Hopkinson Pressure Bar (SHPB) at strain rates in the order of 10<sup>3</sup>/s demonstrated a similar deformation plateau as the static compression experiments with a dynamic increase factor (DIF) of ~1.3 for the bare stainless steel metamaterials and ~2 for the acrylic-stainless steel hybrid composite material.</p>

Topics
  • density
  • impedance spectroscopy
  • stainless steel
  • experiment
  • strength
  • composite
  • selective laser melting
  • yield strength
  • metamaterial