People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Teixeira De Freitas, Sofia
Instituto Superior Técnico
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Experimental evaluation of interface adhesion of a flax fiber composite patch with epoxy and polyurethane adhesives for the reinforcement of steel structurescitations
- 2024On the Mode I Fracture Toughness of Metal-Composite Joints with untreated SLM 3D-Printed Ti6Al4V Substrates
- 2024Disrupting Fracture Toughness Of Adhesively Bonded Joints By Tailoring Composite Substrates
- 2024Acoustic emission approach for identifying fracture mechanisms in composite bonded Jointscitations
- 2023Uncovering the toughening mechanisms of bonded joints through tailored CFRP layupcitations
- 2023How does “listening” help fracture understanding?
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap jointcitations
- 2022Promoting extrinsic bridging of adhesively-bonded CFRP joints through the adhesive layer architecture
- 2022Testing mechanical performance of adhesively bonded composite joints in engineering applications: an overviewcitations
- 2022Enhancement of mode I fracture toughness of adhesively bonded secondary joints using different layup patterning of CFRP
- 2021Effect of salt spray ageing on the fracture of composite-to-metal bonded jointscitations
- 2021Testing mechanical performance of adhesively bonded composite joints in engineering applicationscitations
- 2021The effect of modified tannic acid (TA) eco-epoxy adhesives on mode I fracture toughness of bonded jointscitations
- 2021On the influence of glass fiber mat on the mixed-mode fracture of composite-to-metal bonded jointscitations
- 2021On the influence of glass fiber mat on the mixed-mode fracture of composite-to-metal bonded jointscitations
- 2021Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap jointcitations
- 2021Damage assessment of a titanium skin adhesively bonded to carbon fiber–reinforced plastic omega stringers using acoustic emissioncitations
- 2021Evaluation of the strain-based partitioning method for mixed-mode I+II fracture of bi-material crackscitations
- 2020Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherendscitations
- 2020Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherendscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020Damage assessment of NCF, 2D and 3D Woven Composites under Compression After Multiple-Impact using Acoustic Emissioncitations
- 2020Review on adhesives and surface treatments for structural applications : recent developments on sustainability and implementation for metal and composite substratescitations
- 2019Compression After Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Compositescitations
- 2019From thin to extra-thick adhesive layer thicknesses:Fracture of bonded joints under mode I loading conditionscitations
- 2019Strain-based methodology for mixed-mode I plus II fracture: A new partitioning method for bi-material adhesively bonded jointscitations
- 2019Strain-based methodology for mixed-mode I+II fracture: A new partitioning method for bi-material adhesively bonded jointscitations
- 2019Damage characterization of adhesively-bonded Bi-material joints using acoustic emissioncitations
- 2018Interlaminar adhesion assessment of carbon-epoxy laminates under salt water ageing using peel testscitations
- 2018Interlaminar adhesion assessment of carbon-epoxy laminates under salt water ageing using peel testscitations
- 2018On the fracture behaviour of CFRP bonded joints under mode I loading: Effect of supporting carrier and interface contaminationcitations
Places of action
Organizations | Location | People |
---|
article
Damage characterization of adhesively-bonded Bi-material joints using acoustic emission
Abstract
The aim of the present study is to characterize the damage in bi-material steel-to-composite double-lap adhesively-bonded joints using Acoustic Emission (AE). Two different structural adhesives, a ductile (Methacrylate-based) and brittle (Epoxy-based), were used to bond CFRP skins to a steel core. The fabricated joints were loaded in tension while damage evolution was monitored by AE. Due to the difference in the fracture nature of the adhesives “ductile vs. brittle”, different damage mechanisms were observed; including cohesive failure within the adhesive layer, steel deformation, failure at the adhesive/adherends interface (adhesive failure) and delamination in the CFRP skin. To classify these damages by AE, the AE features of each damage mechanism were first obtained by conducting standard tests on the individual constituents. Then, these AE reference patterns were used to train an ensemble decision tree classifier. The best parameters of the ensemble model were obtained by Bayesian optimization, and the confusion matrix showed that the model was sufficiently trained with the accuracy of 99.5% and 99.8% for Methacrylate-based and Epoxy-based specimens respectively. Afterwards, the trained model was used to classify the AE signals of the double-lap specimens. The AE demonstrated that the dominant damage mechanisms in the case of the Methacrylate-based were cohesive and adhesive failures while in the case of the Epoxy-based they were CFRP skin failure and adhesive failure. These results were consistent with the Digital Image Correlation, Fiber Optic Sensor and camera results. This study demonstrates the potential of AE technique for damage characterization of adhesively-bonded bi-material joints.