People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Banerjee, Sauvik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Guided Wave-Based Early-Stage Debonding Detection and Assessment in Stiffened Panel Using Machine Learning With Deep Auto-Encoded Featurescitations
- 2022Semi-Analytical Finite Element Method for the Analysis of Guided Wave Dispersion in the Pre-stressed Composite Platescitations
- 2022Low-velocity impact source localization in a composite sandwich structure using a broadband piezoelectric sensor networkcitations
- 2019Guided wave based nondestructive analysis of localized inhomogeneity effects in an advanced sandwich composite structurecitations
- 2019Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditionscitations
- 2019Damage-induced acoustic emission source monitoring in a honeycomb sandwich composite structurecitations
- 2016Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided wavescitations
- 2016Guided wave propagation in a honeycomb composite sandwich structure in presence of a high density corecitations
- 2016Ultrasonic guided wave propagation and disbond identification in a honeycomb composite sandwich structure using bonded piezoelectric wafer transducerscitations
- 2016Study of guided wave propagation in a honeycomb composite sandwich plate in presence of a high-density core region using surface-bonded piezoelectric transducers
- 2014Wave Propagation in a Honeycomb Composite Sandwich Structure in the Presence of High-Density Core Using Bonded PZT-Sensorscitations
Places of action
Organizations | Location | People |
---|
article
Guided wave based nondestructive analysis of localized inhomogeneity effects in an advanced sandwich composite structure
Abstract
<p>In this paper, we present a nondestructive analysis of localized inhomogeneity effects on guided wave propagation in an advanced sandwich composite structure. In the process, guided wave dispersion curves were semi-analytically determined for the structure to accurately identify different wave modes in experimental and numerical analysis signals. Finite element simulation of wave propagation in the target structure was then carried out in ABAQUS and validated with the experiment. Significant influences on the wave mode amplitudes were observed due to the presence of a localized inhomogeneity in the structure. An inhomogeneity identification strategy was prepared based on the amplitude changes in the registered guided wave signals from a predefined piezoelectric transducer network. The influence of varying elastic modulus and mass-density of the inhomogeneous region on the wave mode amplitudes and the corresponding inhomogeneity-index magnitudes were also studied.</p>