People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ribeiro, Clarisse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023Development of Silk Fibroin Scaffolds for Vascular Repaircitations
- 2023Natural Indigenous Paper Substrates for Colorimetric Bioassays in Portable Analytical Systems: Sustainable Solutions from the Rain Forests to the Great Plainscitations
- 2023Graphene Based Printable Conductive Wax for Low‐Power Thermal Actuation in Microfluidic Paper‐Based Analytical Devicescitations
- 2023Enhanced neuronal differentiation by dynamic piezoelectric stimulationcitations
- 2022Electrospun Magnetic Ionic Liquid Based Electroactive Materials for Tissue Engineering Applicationscitations
- 2022Piezoelectric and Magnetically Responsive Biodegradable Composites with Tailored Porous Morphology for Biotechnological Applicationscitations
- 2022Environmentally friendly conductive screen‐printable inks based on N‐Doped graphene and polyvinylpyrrolidonecitations
- 2022Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysiscitations
- 2022Printed multifunctional magnetically activated energy harvester with sensing capabilitiescitations
- 2022Tuning magnetic response and ionic conductivity of electrospun hybrid membranes for tissue regeneration strategiescitations
- 2021Ionic Liquid-Based Materials for Biomedical Applicationscitations
- 2020Patterned Piezoelectric Scaffolds for Osteogenic Differentiationcitations
- 2020Morphology dependence degradation of electro-and magnetoactive poly(3-hydroxybutyrateco-hydroxyvalerate) for tissue engineering applicationscitations
- 2020Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties of poly(vinylidene fluoride) nanocompositescitations
- 2020Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategiescitations
- 2020Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffoldscitations
- 2020Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applicationscitations
- 2019Development of bio-hybrid piezoresistive nanocomposites using silk-elastin protein copolymerscitations
- 2019Ionic-liquid-based electroactive polymer composites for muscle tissue engineeringcitations
- 2018Tailored biodegradable and electroactive poly(hydroxybutyrate-co-hydroxyvalerate) based morphologies for tissue engineering applicationscitations
- 2018Electroactive poly(vinylidene fluoride)-based structures for advanced applicationscitations
- 2018Multifunctional platform based on electroactive polymers and silica nanoparticles for tissue engineering applicationscitations
- 2018Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applicationscitations
- 2018Electroactive biomaterial surface engineering effects on muscle cells differentiationcitations
- 2018Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene fluoride) electrospun composite fiber matscitations
- 2018Fluorinated polymers as smart materials for advanced biomedical applicationscitations
- 2018Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applicationscitations
- 2017Nanodiamonds/poly(vinylidene fluoride) composites for tissue engineering applicationscitations
- 2016Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]citations
- 2016Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applicationscitations
- 2015Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettabilitycitations
- 2015Piezoelectric polymers as biomaterials for tissue engineering applicationscitations
Places of action
Organizations | Location | People |
---|
article
Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications
Abstract
This manuscript reports on the fabrication of silk fibroin (SF)-based magnetic electrospun fiber composites as scaffolds for tissue engineering applications. The magnetic responsiveness of the SF composite fibers was achieved by the inclusion of cobalt ferrite (CoFe2O4) or magnetite (Fe3O4) nanoparticles prior to processing the fibers via electrospinning. The influence of the processing parameters, including type and amount of nanoparticles in the composite, on the mean fiber size and size distribution was studied. Whereas the average diameter of pristine SF fibers was of 294±53nm, the inclusion of 5% of CoFe2O4 and Fe3O4 nanoparticles led to a slight increase in the fiber diameter. Nevertheless, the fiber diameter decreased with the higher nanoparticles loading. Regarding the physico-chemical properties of the fibrous mats, it was observed that the degree of crystallinity dropped from 67% of the pristine SF mats to 37% for the SF composites. On the other hand, the onset degradation temperature of the SF electrospun was not significantly altered by inclusion of ferrite nanoparticles. It is shown that the magnetization saturation increased with the nanoparticle filler content for both compositions (CoFe2O4/SF and Fe3O4/SF). Neither the SF pristine fibers nor the SF composites were cytotoxic, indicating their suitability for tissue engineering applications. ; This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/ FIS/04650/2013 and grants SFRH/BPD/121526/2016 (D.C.), SFRH/ BPD/90870/2012 (C.R.), SFRH/BPD/104204/2014 (A.F.) and SFRH/ BPD/97739/2013 (P.M.). The authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry Department under the ELKARTEK program. ; info:eu-repo/semantics/publishedVersion