Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tan, W.

  • Google
  • 8
  • 30
  • 151

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Porosity-dependent stability analysis of bio-inspired cellular nanocomposite shells6citations
  • 2024Hygroscopic phase field fracture modelling of composite materials9citations
  • 2023FTIR studies on interactions among components in PVdF-HFP:PC:MPII electrolytes4citations
  • 2023Efficiency enhancement of dye-sensitized solar cell with PVdF-HFP:MPII:NaI quasi-solid-state electrolytecitations
  • 2023Hygroscopic phase field fracture modelling of composite materials9citations
  • 2019The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy compositescitations
  • 2018The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling118citations
  • 2009Introduction to an approach based on the (α+β) microstructure of elements of alloy Ti-6Al-4V5citations

Places of action

Chart of shared publication
Al-Greer, M.
1 / 3 shared
Aragh, B. Sobhani
1 / 3 shared
Farahani, E. Borzabadi
1 / 2 shared
Hughes, D.
1 / 4 shared
Au-Yeung, K.
2 / 2 shared
Martínezpañeda, E.
1 / 2 shared
Quintanas-Corominas, A.
2 / 5 shared
Najihah, M. Z.
1 / 1 shared
Saaid, F. I.
2 / 2 shared
Arsyad, A.
1 / 1 shared
Noor, I. S. M.
1 / 1 shared
Raffi, A. A. M.
1 / 1 shared
Zakaria, P. N. M.
1 / 1 shared
Woo, H. J.
1 / 2 shared
Martinez-Paneda, E.
1 / 20 shared
Fleck, Na
1 / 20 shared
Boies, Am
1 / 1 shared
Stallard, Jc
1 / 3 shared
Smail, Fr
1 / 1 shared
Naya, F.
1 / 8 shared
Molina-Aldareguía, Jm
1 / 2 shared
Zhan, L.
1 / 1 shared
González, C.
1 / 35 shared
Falzon, Bg
1 / 3 shared
Chang, T.
1 / 3 shared
Llorca, Javier
1 / 309 shared
Yang, L.
1 / 25 shared
Eichlseder, W.
1 / 4 shared
Stoschka, Michael
1 / 29 shared
Stockinger, Martin
1 / 19 shared
Chart of publication period
2024
2023
2019
2018
2009

Co-Authors (by relevance)

  • Al-Greer, M.
  • Aragh, B. Sobhani
  • Farahani, E. Borzabadi
  • Hughes, D.
  • Au-Yeung, K.
  • Martínezpañeda, E.
  • Quintanas-Corominas, A.
  • Najihah, M. Z.
  • Saaid, F. I.
  • Arsyad, A.
  • Noor, I. S. M.
  • Raffi, A. A. M.
  • Zakaria, P. N. M.
  • Woo, H. J.
  • Martinez-Paneda, E.
  • Fleck, Na
  • Boies, Am
  • Stallard, Jc
  • Smail, Fr
  • Naya, F.
  • Molina-Aldareguía, Jm
  • Zhan, L.
  • González, C.
  • Falzon, Bg
  • Chang, T.
  • Llorca, Javier
  • Yang, L.
  • Eichlseder, W.
  • Stoschka, Michael
  • Stockinger, Martin
OrganizationsLocationPeople

article

The role of interfacial properties on the intralaminar and interlaminar damage behaviour of unidirectional composite laminates: Experimental characterization and multiscale modelling

  • Naya, F.
  • Molina-Aldareguía, Jm
  • Zhan, L.
  • Tan, W.
  • González, C.
  • Falzon, Bg
  • Chang, T.
  • Llorca, Javier
  • Yang, L.
Abstract

The development of the latest generation of wide-body passenger aircraft has heralded a new era in the utilisation of carbon-fibre composite materials. One of the primary challenges facing future development programmes is the desire to reduce the extent of physical testing, required as part of the certification process, by adopting a ‘certification by simulation’ approach. A hierarchical bottom-up multiscale simulation scheme can be an efficient approach that takes advantage of the natural separation of length scales between different entities (fibre/matrix, ply, laminate and component) in composite structures. In this work, composites with various fibre/matrix and interlaminar interfacial properties were fabricated using an autoclave under curing pressures ranging from 0 to 0.8 MPa. The microstructure (mainly void content and spatial distribution) and the mechanical properties of the matrix and fibre/matrix interface were measured, the latter by means of nanoindentation tests in matrix pockets, and fibre push-in tests. In addition, the macroscopic interlaminar shear strength was determined by means of three-points bend tests on short beams. To understand the influence of interfacial properties on the intralaminar failure behaviour, a high-fidelity microscale computational model is presented to predict homogenized ply properties under shear loading. Predicted ply material parameters are then transferred to a mesoscale composite damage model to reveal the interaction between intralaminar and interlaminar damage behaviour of composite laminates.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • Carbon
  • simulation
  • strength
  • composite
  • nanoindentation
  • void
  • ceramic
  • interfacial
  • curing
  • polymer-matrix composite