People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Geever, Luke
Technological University of the Shannon: Midlands Midwest
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2023Synthesis of NVCL-NIPAM hydrogels using PEGMA as a chemical crosslinker for controlled swelling behaviours in potential shapeshifting applicationscitations
- 2023Micro-Injection Moulding of PEO/PCL Blend–Based Matrices for Extended Oral Delivery of Fenbendazolecitations
- 2023Compatibility Study Between Fenbendazole and Poly(Ethylene Oxide) with Application in Solid Dispersion Formulations Using Hot-Melt Extrusioncitations
- 2022Compatibility Study between Fenbendazole and Polymeric Excipients Used in Pharmaceutical Dosage Forms Using Thermal and Non-Thermal Analytical Techniquescitations
- 2020Effect of electron beam irradiation on the rheological properties and phase transition temperature of poly(N-vinylcaprolactam)
- 2018Surface-modified halloysite nanotubes reinforced poly(lactic acid) for use in biodegradable coronary stentscitations
- 2018Degradable nanocomposites for fused filament fabrication applicationscitations
- 2017Halloysite nanotube reinforced polylactic acid compositecitations
- 2016Synthesis and characterization of high density polyethylene/peat ash compositescitations
- 2016Chemical surface modification of calcium carbonate particles with stearic acid using different treating methodscitations
- 2016Melt Extruded Bioresorbable Polymer Composites for Potential Regenerative Medicine Applicationscitations
- 2016The effect of the mixing routes of biodegradable polylactic acid and polyhydroxybutyrate nanocomposites and compatibilised nanocompositescitations
- 2015Thermal Degradation of Bio-nanocompositescitations
- 2014The effect of processing conditions for polylactic acid based fibre composites via twin-screw extrusioncitations
- 2014Effect of Compatibilizer Content on the Mechanical Properties of Bioplastic Composites via Hot Melt Extrusioncitations
- 2014Improvement in mechanical properties of grafted polylactic acid composite fibers via hot melt extrusioncitations
- 2014Melt Processing of Bioplastic Composites via Twin Screw Extrusion and Injection Moldingcitations
- 2014Smart thermosensitive poly (N-vinylcaprolactam) based hydrogels for biomedical applications.
- 2013Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate compositescitations
- 2011Assessing the effect of selected photoinitiators on the properties of photopolymerised temperature sensitive hydrogels
- 2010Physical and mechanical properties of blends based on poly (dl-lactide), poly (l-lactide-glycolide) and poly (ε-caprolactone)citations
- 2010In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone)citations
- 2010Characterisation of the effects of a titanium micro particle filler on a polyether-block-amide host matrixcitations
- 2009Development and characterisation of an agar-polyvinyl alcohol blend hydrogelcitations
- 2008Characterisation and controlled drug release from novel drug-loaded hydrogelscitations
- 2007The effect of salts and pH buffered solutions on the phase transition temperature and swelling of thermoresponsive pseudogels based on N-isopropylacrylamidecitations
- 2007Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion processcitations
- 2007The incorporation of an organically modified layered silicate in monolithic polymeric matrices produced using hot melt extrusioncitations
- 2007The synthesis, swelling behaviour and rheological properties of chemically crosslinked thermosensitive copolymers based on N-isopropylacrylamidecitations
- 2006The use of Agar as a novel filler for monolithic matrices produced using hot melt extrusioncitations
- 2006Lower critical solution temperature control and swelling behaviour of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamidecitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of high density polyethylene/peat ash composites
Abstract
<p>A new type of polymer composite was synthesized from peat ash which was obtained as industrial waste. This was added to high density polyethylene (HDPE) at varying mixing ratios and the resulting products were characterized using different experiments which included Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), melt flow index (MFI), density, wettability, tensile test, flexural test and cost analysis. The effects of various ash loadings and the use of the maleic anhydride grafted high density polyethylene (HDPE-g-MA) compatibilizer on the physical and mechanical properties of composites were investigated. It was observed that the utilization of peat ash significantly increased the tensile strength and the flexural modulus, where also reducing raw material cost. Incorporating (HDPE-g-MA) in the composites formulation led to further increases in tensile and flexural properties. Conversely, there was a significant decrease of impact strength found for all composites in comparison to the virgin HDPE. And the impact strengths generally decreased as peat ash content increases. Microstructural analyses showed that surface treated peat ash particles appeared to be well-incorporated into the HDPE matrix, as intimated polymer/peat ash contact was observed. In addition, the melt flow index of the composites decreased remarkably with an increase in peat ash content. No significant water uptake effect was detected on peat ash composites indicating that these materials could be used as a direct replacement for HDPE in applications where impact strength is not a critical factor. Furthermore, the use of peat ash increased the composite density in comparison to virgin HDPE. Nevertheless, as peat ash reinforcement does offer increased tensile and flexural properties, this may make the end product lighter as lower wall thickness parts can be used to fulfil the same function. From this study, it was concluded that the utilization of the peat ash from peat fired power stations has proved to have significant value-added potential as a filler material in polymer composites.</p>