Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nicoletti, F.

  • Google
  • 1
  • 5
  • 298

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites298citations

Places of action

Chart of shared publication
Vitale, G.
1 / 2 shared
Scalici, Tommasso
1 / 29 shared
Valenza, A.
1 / 37 shared
Prestipino, M.
1 / 1 shared
Fiore, V.
1 / 32 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Vitale, G.
  • Scalici, Tommasso
  • Valenza, A.
  • Prestipino, M.
  • Fiore, V.
OrganizationsLocationPeople

article

A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites

  • Vitale, G.
  • Scalici, Tommasso
  • Valenza, A.
  • Prestipino, M.
  • Fiore, V.
  • Nicoletti, F.
Abstract

<p>Several researchers have shown how sisal fibres possess remarkable tensile properties that yield them good candidates as reinforcement in biocomposite materials. This work aims to evaluate the effect of an eco-friendly and cost effective surface treatment method based on the use of commercial sodium bicarbonate (i.e. baking soda) on properties of sisal fibre and its epoxy composites. In particular, raw sisal fibres were treated with a 10%w/w of sodium bicarbonate solution for different periods (24, 120 and 240 h), at room temperature. Changes occurring in sisal fibres were characterized through scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis and helium pycnometer analysis. The mechanical characterization of sisal fibre was carried out through single fibre tensile tests and a reliability analysis of the experimental data was performed. A mathematical model was also applied to investigate the relation between the transverse dimension of the fibres and their tensile properties. Interfacial adhesion of sisal fibre with an epoxy matrix was investigated using single fibre pull out technique. Moreover, to deeper investigate the effect of the proposed treatment, epoxy based composites reinforced with short randomly oriented sisal fibres were manufactured and characterized by means of quasi-static flexural tests. The experimental results showed that 120 h is the optimum time for treating sisal fibre to achieve highest interfacial adhesion and mechanical properties with epoxy matrix.</p>

Topics
  • impedance spectroscopy
  • surface
  • Sodium
  • composite
  • thermogravimetry
  • bending flexural test
  • Fourier transform infrared spectroscopy