People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rezazadeh, Mohammadali
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Stress–strain model for FRP-confined circular concrete columns developing structural softening behaviorcitations
- 2023A novel analytical framework for assessing the impact response of SFRC beamcitations
- 2023Analytical model to predict axial stress-strain behavior of heat-damaged unreinforced concrete columns wrapped by FRP jacketcitations
- 2022Modelling the high strain rate tensile behavior of steel fiber reinforced concrete using artificial neural network approachcitations
- 2021Modelling the High Strain Rate Tensile Behavior of Steel Fiber Reinforced Concrete Using Artificial Neural Network Approachcitations
- 2021An analytical approach for evaluating the impact response of steel fiber reinforced concrete beam
- 2021Modeling the compressive behavior of steel fiber reinforced concrete under high strain rate loadscitations
- 2021Modeling the Compressive Behavior of Steel Fiber Reinforced Concrete Under High Strain Rate Loadscitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Analytical Model to Predict Dilation Behavior of FRP Confined Circular Concrete Columns Subjected to Axial Compressive Loadingcitations
- 2019Mechanical behavior of concrete prisms reinforced with steel and GFRP bar systemscitations
- 2017A model for the simultaneous prediction of the flexural and shear deflections of statically determinate and indeterminate reinforced concrete structurescitations
- 2017Shear strengthening of damaged reinforced concrete beams with hybrid composite platescitations
- 2017Flexural and shear response predictions of statically determinate and indeterminate RC structures strengthened with fibre reinforced polymer
- 2017A model for the simultaneous prediction of the flexural and shear deflections of statically determinate and indeterminate RC structurescitations
- 2015Shear strengthening of damaged reinforced concrete beams with hybrid composite platescitations
- 2015Design formula for the flexural strengthening of RC beams using prestressed CFRP reinforcement
- 2015Analytical approach for the flexural analysis of RC beams strengthened with prestressed CFRPcitations
- 2015Transfer zone of prestressed CFRP reinforcement applied according to NSM technique for strengthening of RC structurescitations
- 2014Evaluation of the performance of full-scale RC beams prestressed with NSM-CFRP laminates
- 2014A new hybrid methodology according to near surface mounted carbon fiber reinforced polymer technique for the flexural strengthening of reinforced concrete beamscitations
Places of action
Organizations | Location | People |
---|
article
Analytical approach for the flexural analysis of RC beams strengthened with prestressed CFRP
Abstract
The objective of this paper is to propose a simplified analytical approach to predict the flexural behavior of simply supported reinforced-concrete (RC) beams flexurally strengthened with prestressed carbon fiber reinforced polymer (CFRP) reinforcements using either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques. This design methodology also considers the ultimate flexural capacity of NSM CFRP strengthened beams when concrete cover delamination is the governing failure mode. A moment–curvature (M–χ) relationship formed by three linear branches corresponding to the precracking, postcracking, and postyielding stages is established by considering the four critical M–χ points that characterize the flexural behavior of CFRP strengthened beams. Two additional M–χ points, namely, concrete decompression and steel decompression, are also defined to assess the initial effects of the prestress force applied by the FRP reinforcement. The mid-span deflection of the beams is predicted based on the curvature approach, assuming a linear curvature variation between the critical points along the beam length. The good predictive performance of the analytical model is appraised by simulating the force–deflection response registered in experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements. ; The study reported in this paper is part of the project "PreLami - Performance of reinforced concrete structures strengthened in flexural with an innovative system using prestressed NSM CFRP laminates", with the reference PTDC/ECM/114945/2009. The third author also wishes to acknowledge the scholarship granted by FT (SFRH/BD/61756/2009). The authors would also like to acknowledge the support provided by S&P, for supplying the adhesives and the laminates, and Casais and CiviTest for the preparation of the beams.