People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aghdam, M. M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2016Modeling and analysis of reversible shape memory adaptive panelscitations
- 2015Micro-mechanics of composite with SMA fibers embedded in metallic/polymeric matrix under off-axial loadingscitations
- 2015A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect
- 2015Micromechanics of shape memory alloy fiber-reinforced composites subjected to multi-axial non-proportional loadingscitations
- 2015Micro-macro thermo-mechanical analysis of axisymmetric shape memory alloy composite cylinderscitations
- 2014Shape control of shape memory alloy composite beams in the post-buckling regimecitations
- 2014Active shape/stress control of shape memory alloy laminated beamscitations
- 2014On the vibration control capability of shape memory alloy composite beamscitations
- 2014A robust three-dimensional phenomenological model for polycrystalline SMAscitations
- 2013A phenomenological SMA model for combined axial-torsional proportional/non-proportional loading conditionscitations
Places of action
Organizations | Location | People |
---|
article
Active shape/stress control of shape memory alloy laminated beams
Abstract
<p>This paper deals with a study of the modeling and active shape/stress control of laminated beams subjected to the static loading with integrated/embedded shape memory alloy (SMA) layer. A one-dimensional shape memory alloy model is proposed which is able to simulate main aspects of SMAs including martensite transformation/reorientation, shape memory effect and pseudo-elasticity. In particular, the model includes a ferro-elasticity effect which is essential for accurate prediction of behavior of pre-stained SMA layers. Euler-Bernoulli beam theory and von Karman geometrically non-linearity are utilized to describe displacement and strain fields of laminated beams consist of SMA and elastic layers. A finite element method along with an iterative incremental approach is developed to treat material and geometrical non-linearities of the governing equations of equilibrium. To validate the proposed SMA model, numerical results of partial uniaxial tension tests are compared with experimental data in the literature which show excellent correlations. Influence of pre-strain, temperature and location of SMA layer on the active shape/stress control of SMA laminated beams subjected to different thermo-mechanical loading paths are put into evidence via a parametric study, and pertinent conclusions are outlined.</p>