Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Larrinaga, P.

  • Google
  • 2
  • 6
  • 109

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Bonding strength of stainless steel rebars in concretes exposed to marine environments37citations
  • 2013Non-linear analytical model of composites based on basalt textile reinforced mortar under uniaxial tension72citations

Places of action

Chart of shared publication
Calderon-Uriszar-Aldaca, I.
1 / 2 shared
Garcia, H.
1 / 5 shared
Briz, E.
1 / 1 shared
Garmendia, L.
1 / 3 shared
Chastre, Carlos
1 / 27 shared
San Jose, Jt
1 / 4 shared
Chart of publication period
2018
2013

Co-Authors (by relevance)

  • Calderon-Uriszar-Aldaca, I.
  • Garcia, H.
  • Briz, E.
  • Garmendia, L.
  • Chastre, Carlos
  • San Jose, Jt
OrganizationsLocationPeople

article

Non-linear analytical model of composites based on basalt textile reinforced mortar under uniaxial tension

  • Garmendia, L.
  • Larrinaga, P.
  • Chastre, Carlos
  • San Jose, Jt
Abstract

The recent development of inorganic based composites as low-cost materials in reinforced concrete structural strengthening and precast thin-walled components, requires the creation of models that predict the mechanical behaviour of these materials. Textile Reinforced Mortar (TRM) shows complex stress-strain behaviour in tension derived from the heterogeneity of its constituent materials. This complexity is mainly caused by the formation of several cracks in the inorganic matrix. The multiple cracking leads to a decrease in structural stiffness. Due to the severe conditions of the serviceability limit state in structural elements, the prediction of the stress-strain curve is essential for design and calculation purposes. After checking other models, an empirical nonlinear approach, which is based on the crack control expression included in the Eurocode 2, is proposed in this paper. Following this scope, this paper presents an experimental campaign focused on 31 TRM specimens reinforced with four different reinforcing ratios. The results are analysed and satisfactorily contrasted with the presented non-linear approach.

Topics
  • impedance spectroscopy
  • crack
  • stress-strain curve
  • stress-strain behavior
  • composite