People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hasager, Charlotte Bay
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Failsafe layer for wind turbine blades: Erosion protection of glass fiber composite through nanodiamond-treated flax composite top layercitations
- 2024Towards greener wind power: Nanodiamond-treated flax fiber composites outperform standard glass fiber composites in impact fatigue testscitations
- 2022Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine bladescitations
- 2022Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine bladescitations
- 2019EROSION Report D1.4 Data on rain drop size distribution at selected sites
- 2018Ocean wind retrieval from Sentinel-1 SAR and its potential for offshore wind energy
Places of action
Organizations | Location | People |
---|
article
Towards greener wind power: Nanodiamond-treated flax fiber composites outperform standard glass fiber composites in impact fatigue tests
Abstract
Wind energy is facing two major problems, recyclability of wind turbine blades, primarily made from fiberglass, and rain erosion on the blade’s leading edges. Here, we show that flax fiber reinforced epoxy composites have less impact fatigue damage than glass fiber (GF) composites made with the same resin. The novel treatment of flax with non-toxic nanodiamonds even boosts its outstanding performance. Nanodiamond-treated flax fiber (FFND) composites exhibit a damage incubation period up to 17 times as long as GF composites and have at least 74 % less mass loss. This is connected to lower initial impact pressure, less shock wave reflections and better impact absorption of flax composites. The nanodiamonds act as fiber sizing, strengthening the fibers and their matrix interface. This delays fracturing and results in less erosion, making the biodegradable FFND a promising replacement for GF towards a fabrication of more sustainable and longer lasting wind turbine blades. ; publishedVersion