People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johansen, Nicolai Frost-Jensen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Failsafe layer for wind turbine blades: Erosion protection of glass fiber composite through nanodiamond-treated flax composite top layercitations
- 2024Towards greener wind power: Nanodiamond-treated flax fiber composites outperform standard glass fiber composites in impact fatigue testscitations
- 2023High rate response of elastomeric coatings for wind turbine blade erosion protection evaluated through impact tests and numerical modelscitations
- 2023Fatigue S-N curve approach for impact loading of hyper- and visco-elastic leading edge protection systems of wind turbine blades
- 2022Technologies of Wind Turbine Blade Repair: Practical Comparisoncitations
- 2022Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine bladescitations
- 2022Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine bladescitations
- 2022Graphene/sol–gel modified polyurethane coating for wind turbine blade leading edge protection: Properties and performancecitations
- 2021Nanoengineered graphene-reinforced coating for leading edge protection of wind turbine bladescitations
- 2020Test Methods for Evaluating Rain Erosion Performance of Wind Turbine Blade Leading Edge Protection Systems
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
Places of action
Organizations | Location | People |
---|
article
Towards greener wind power: Nanodiamond-treated flax fiber composites outperform standard glass fiber composites in impact fatigue tests
Abstract
Wind energy is facing two major problems, recyclability of wind turbine blades, primarily made from fiberglass, and rain erosion on the blade’s leading edges. Here, we show that flax fiber reinforced epoxy composites have less impact fatigue damage than glass fiber (GF) composites made with the same resin. The novel treatment of flax with non-toxic nanodiamonds even boosts its outstanding performance. Nanodiamond-treated flax fiber (FFND) composites exhibit a damage incubation period up to 17 times as long as GF composites and have at least 74 % less mass loss. This is connected to lower initial impact pressure, less shock wave reflections and better impact absorption of flax composites. The nanodiamonds act as fiber sizing, strengthening the fibers and their matrix interface. This delays fracturing and results in less erosion, making the biodegradable FFND a promising replacement for GF towards a fabrication of more sustainable and longer lasting wind turbine blades. ; publishedVersion