People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abidnejad, Roozbeh
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Exploring the potential of regenerated Ioncell fiber composites: a sustainable alternative for high-strength applicationscitations
- 2024Wood flour and Kraft lignin enable air-drying of the nanocellulose-based 3D-printed structurescitations
- 2024Recycled carbon fiber reinforced composites: Enhancing mechanical properties through co-functionalization of carbon nanotube-bonded microfibrillated cellulosecitations
- 2021Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particlescitations
- 2021Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particlescitations
- 2021Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturingcitations
Places of action
Organizations | Location | People |
---|
article
Recycled carbon fiber reinforced composites: Enhancing mechanical properties through co-functionalization of carbon nanotube-bonded microfibrillated cellulose
Abstract
The imperative challenge of repurposing recycled carbon fiber (rCF) in composite structures, due to its cost-effectiveness and eco-friendly attributes, has spurred innovative research. This study introduces a scalable processing technique, integrating carbon nanotube (CNT)-bonded microfibrillated cellulose (MFC) onto randomly oriented rCF mats, focusing on enhancing mechanical properties. Employing electrophoretic deposition (EPD), rCF surfaces are effectively functionalized with CNT/MFC, probed through X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Modified fiber surfaces exhibit reduced contact angles, indicating improved wettability. Epoxy-based composites, fabricated via vacuum infusion, show up to 32% and 27% improvements in tensile and flexural strength. Dynamic mechanical analysis (DMA) confirms elevated storage modulus and energy dissipation capability. SEM analysis of fracture surfaces illustrates robust adhesion between coated fibers and the matrix, supporting the proposed approach's efficacy. This study unveils an innovative pathway to enhance recycled carbon fiber composite properties, extending their application potential in diverse engineering domains. ; Peer reviewed