Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Partridge, Ivana K.

  • Google
  • 25
  • 43
  • 759

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (25/25 displayed)

  • 2024Effects of accelerated curing in thermoplastic particle interleaf epoxy laminates2citations
  • 2019Coupon scale Z-pinned IM7/8552 delamination tests under dynamic loading11citations
  • 2019Effective use of metallic Z-pins for composites' through-thickness reinforcement57citations
  • 2018COUPON SCALE MODELLING OF THE BRIDGING MECHANICS OF HIGH-RATE LOADED Z-PINScitations
  • 2018Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delamination20citations
  • 2018Evaluating Z-pin performance under high-velocity impact conditionscitations
  • 2017Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delamination20citations
  • 2016Understanding and prediction of fibre waviness defect generationcitations
  • 2016Use of microfasteners to produce damage tolerant composite structures5citations
  • 2016On the delamination self-sensing function of Z-pinned composite laminates25citations
  • 2016Developing cure kinetics models for interleaf particle toughened epoxiescitations
  • 2015Delamination resistance of composites using inclined Z-pinscitations
  • 2012Finite element modelling of z-pinned composite T-joints84citations
  • 2012Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system19citations
  • 2012RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites94citations
  • 2012RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites94citations
  • 2010Percolation threshold of carbon nanotubes filled unsaturated polyesters70citations
  • 2010Toward a constitutive model for cure-dependent modulus of a high temperature epoxy during the cure37citations
  • 2009Monitoring Cure in Epoxies Containing Carbon Nanotubes with an Optical-Fiber Fresnel Refractometer21citations
  • 2009Dielectric monitoring of carbon nanotube network formation in curing thermosetting nanocomposites16citations
  • 2009Monitoring dispersion of carbon nanotubes in a thermosetting polyester resin54citations
  • 2008Thermomechanical analysis of a toughened thermosetting systemcitations
  • 2008Thermomechanical analysis of a toughened thermosetting system.9citations
  • 2007Exploring mechanical property balance in tufted carbon fabric/epoxy composites.88citations
  • 2004Inverse heat transfer for optimization and on-line thermal properties estimation in composites curing.33citations

Places of action

Chart of shared publication
Gaska, Karolina
1 / 4 shared
Kratz, James
3 / 46 shared
Maes, Vincent Karel
1 / 7 shared
Paris, Christophe
1 / 4 shared
Olivier, Philippe
1 / 41 shared
Ponnusami, Sathiskumar A.
1 / 7 shared
Allegri, Giuliano
4 / 32 shared
Ponnusamic, Sathiskumar A.
1 / 1 shared
Cui, Hao
3 / 11 shared
Petrinic, Nik
3 / 28 shared
Hallett, Stephen R.
10 / 270 shared
Mahadik, Yusuf
1 / 6 shared
Yasaee, Mehdi
5 / 28 shared
Mmembe, Beene
2 / 2 shared
Melro, Antonio
1 / 6 shared
Zhang, Bing
2 / 5 shared
Cochrane, Alex
1 / 1 shared
Lander, James
1 / 1 shared
Ivanov, Dmitry S.
1 / 31 shared
Nixon-Pearson, Oliver J.
1 / 12 shared
Belnoue, Jonathan P.-H.
1 / 35 shared
Potter, K. D.
1 / 7 shared
Mesogitis, Tassos
2 / 4 shared
Skordos, Alex
1 / 2 shared
Hamerton, Ian
1 / 113 shared
Gannon, Sam
1 / 1 shared
Bianchi, F.
1 / 4 shared
Mouritz, A.
1 / 3 shared
Koh, T.
1 / 1 shared
Zhang, X.
1 / 65 shared
Dimopoulos, Athanasios
2 / 3 shared
Skordos, Alexandros A.
9 / 23 shared
Costa, Elisabete F. Reia Da
1 / 1 shared
Rezai, Amir
3 / 5 shared
Da Costa, Elisabete F. Reia
1 / 1 shared
Battisti, Andrea
3 / 6 shared
Skordos, A. A.
2 / 4 shared
Zarrelli, M.
3 / 26 shared
Buggy, Stephen J.
1 / 1 shared
Tatam, Ralph P.
1 / 3 shared
James, Stephen W.
1 / 2 shared
Dellanno, Giuseppe
1 / 5 shared
Cartié, Denis D. R.
1 / 2 shared
Chart of publication period
2024
2019
2018
2017
2016
2015
2012
2010
2009
2008
2007
2004

Co-Authors (by relevance)

  • Gaska, Karolina
  • Kratz, James
  • Maes, Vincent Karel
  • Paris, Christophe
  • Olivier, Philippe
  • Ponnusami, Sathiskumar A.
  • Allegri, Giuliano
  • Ponnusamic, Sathiskumar A.
  • Cui, Hao
  • Petrinic, Nik
  • Hallett, Stephen R.
  • Mahadik, Yusuf
  • Yasaee, Mehdi
  • Mmembe, Beene
  • Melro, Antonio
  • Zhang, Bing
  • Cochrane, Alex
  • Lander, James
  • Ivanov, Dmitry S.
  • Nixon-Pearson, Oliver J.
  • Belnoue, Jonathan P.-H.
  • Potter, K. D.
  • Mesogitis, Tassos
  • Skordos, Alex
  • Hamerton, Ian
  • Gannon, Sam
  • Bianchi, F.
  • Mouritz, A.
  • Koh, T.
  • Zhang, X.
  • Dimopoulos, Athanasios
  • Skordos, Alexandros A.
  • Costa, Elisabete F. Reia Da
  • Rezai, Amir
  • Da Costa, Elisabete F. Reia
  • Battisti, Andrea
  • Skordos, A. A.
  • Zarrelli, M.
  • Buggy, Stephen J.
  • Tatam, Ralph P.
  • James, Stephen W.
  • Dellanno, Giuseppe
  • Cartié, Denis D. R.
OrganizationsLocationPeople

article

Effects of accelerated curing in thermoplastic particle interleaf epoxy laminates

  • Gaska, Karolina
  • Kratz, James
  • Maes, Vincent Karel
  • Partridge, Ivana K.
  • Paris, Christophe
  • Olivier, Philippe
Abstract

Faster heating rates of 10 °C/min and higher process temperatures of 210 °C were applied to the commercial M21 resin system. The total process time was reduced by two-thirds while achieving the same degree-of-cure in the epoxy. Thermal analysis and hot-stage microscopy showed that the thermoplastic interleaf particles melt at around 15 °C above the manufacturer's recommended 180 °C curing temperature. A short dwell at 180 °C was found to prevent the thermoplastic particle from mixing with the thermoset pre-polymer before ramping to the accelerated curing temperature of 210 °C. Such interaction was found to decrease the glass transition temperature by 13–45 %, but increase the mode I delamination resistance by 70–105 %, respectively. The results demonstrate that accelerated curing of interleaf systems can shorten cycle time and produce a range of physical and mechanical properties from a single base material, opening the design space to new and optimised composite structures.

Topics
  • melt
  • glass
  • glass
  • composite
  • thermal analysis
  • glass transition temperature
  • resin
  • thermoset
  • thermoplastic
  • curing
  • microscopy