Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Signorini, Virginia

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Hydrogen permeability of thin-ply composites after mechanical loading10citations

Places of action

Chart of shared publication
Langhammer, Cristoph
1 / 1 shared
Ohlsson, Fredrik
1 / 1 shared
Minelli, Matteo
1 / 6 shared
Asp, Leif E.
1 / 13 shared
Katsivalis, Ioannis
1 / 14 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Langhammer, Cristoph
  • Ohlsson, Fredrik
  • Minelli, Matteo
  • Asp, Leif E.
  • Katsivalis, Ioannis
OrganizationsLocationPeople

article

Hydrogen permeability of thin-ply composites after mechanical loading

  • Langhammer, Cristoph
  • Ohlsson, Fredrik
  • Minelli, Matteo
  • Asp, Leif E.
  • Signorini, Virginia
  • Katsivalis, Ioannis
Abstract

<p>Hydrogen is a sustainable alternative to conventional fuels, and it may be obtained with near zero carbon footprint. However, hydrogen storage remains a key challenge, and the use of composite tanks has gained significant interest over the last few years. In addition, thin-ply composites promote fibre damage by delaying matrix microcracking and free edge delamination. In this work, the H2 permeation/diffusion performance of virgin and mechanically loaded thin cross-ply laminates is studied. In addition, Scanning Electron Microscopy (SEM) is used to identify defects and micro-damage in the laminates and explain the experimental values. The study shows that the hydrogen (H2) barrier performances of thin-ply composites are lower than conventional metallic systems. Obtained permeability values, however, resulted well below the allowable limits for most combinations of temperature and pressure and remain unaffected despite the application of high tensile strains showing that permeation is not accelerated.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • composite
  • Hydrogen
  • defect
  • permeability