People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Katsivalis, Ioannis
Chalmers University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Hydrogen permeability of thin-ply composites after mechanical loadingcitations
- 2024Fatigue performance and damage characterisation of ultra-thin tow-based discontinuous tape compositescitations
- 2024Strength analysis and failure prediction of thin tow-based discontinuous compositescitations
- 2024Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2024A 3D voxel-based mesostructure generator for finite element modelling of tow-based discontinuous compositescitations
- 2023Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2022Multilayer leading edge protection systems of wind turbine blades
- 2022Multilayer leading edge protection systems of wind turbine blades:A review of material technology and damage modelling
- 2022Multilayer Leading Edge Protection Systems of Wind Turbine Blades. A Review of Material Technology and Damage Modelling
- 2022Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applicationscitations
- 2022Multilayer Leading Edge Protection systems of Wind Turbine Blades: A review of material technology and damage modelling
- 2020Development of cohesive zone models for the prediction of damage and failure of glass/steel adhesive jointscitations
- 2019Failure prediction and optimal selection of adhesives for glass/steel adhesive jointscitations
- 2018Strength evaluation and failure prediction of bolted and adhesive glass/steel jointscitations
Places of action
Organizations | Location | People |
---|
article
Hydrogen permeability of thin-ply composites after mechanical loading
Abstract
<p>Hydrogen is a sustainable alternative to conventional fuels, and it may be obtained with near zero carbon footprint. However, hydrogen storage remains a key challenge, and the use of composite tanks has gained significant interest over the last few years. In addition, thin-ply composites promote fibre damage by delaying matrix microcracking and free edge delamination. In this work, the H2 permeation/diffusion performance of virgin and mechanically loaded thin cross-ply laminates is studied. In addition, Scanning Electron Microscopy (SEM) is used to identify defects and micro-damage in the laminates and explain the experimental values. The study shows that the hydrogen (H2) barrier performances of thin-ply composites are lower than conventional metallic systems. Obtained permeability values, however, resulted well below the allowable limits for most combinations of temperature and pressure and remain unaffected despite the application of high tensile strains showing that permeation is not accelerated.</p>