People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zou, Zhenmin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2025Effect of micro-scale fibre uncertainties on the mechanical behaviour of natural/synthetic hybrid fibre compositescitations
- 2024Intra-yarn fibre hybridisation effect on homogenised elastic properties and micro and meso-stress analysis of 2D woven laminae: Two-scale FE modelcitations
- 2024A two‐scale numerical analysis of intra‐yarn hybrid natural/synthetic woven composites
- 2024The static and fatigue failure of co-cured composite joints with two-scale interface tougheningcitations
- 2024Zero-tension fatigue behaviour of co-cured composite step joints with multiscale toughening
- 2024A two-scale numerical analysis of intra-yarn hybridnatural/synthetic woven composites
- 2024Fatigue Characterization of Composite Laminates with Interface Hybrid Toughening Using a Single-Step Joint Configurationcitations
- 2023Micromechanics of intra-laminar hybrid lamina with hollow fibres:
- 2023The effect of hygrothermal ageing on the delamination of Carbon/epoxy laminates with Core-shell rubber nanoparticle and Micro-fibre thermoplastic veil tougheningcitations
- 2023Micromechanics of intra-laminar hybrid lamina with hollow fibres::a RVE model
- 2022On the effect of binders on interlaminar fracture energies and R-curves of carbon/epoxy laminates with non-woven micro-fibre veilscitations
- 2022On the effect of binders on interlaminar fracture energies and R-curves of carbon/epoxy laminates with non-woven micro-fibre veilscitations
- 2022On the R-curve behaviour of carbon/epoxy laminates with core-shell rubber nanoparticle and micro-fibre veil hybrid toughening: Carbon vs PPS veilscitations
- 2022Thermally induced residual micro-stresses in hybrid composite laminates with tow-level fibre hybridization
- 2022Thermally induced residual micro-stresses in hybrid composite laminates with tow-level fibre hybridization
- 2018A computationally efficient cohesive zone model for fatiguecitations
- 2017Frequency-Dependent Cohesive Zone Models for Fatiguecitations
- 2008Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimenscitations
Places of action
Organizations | Location | People |
---|
article
The effect of hygrothermal ageing on the delamination of Carbon/epoxy laminates with Core-shell rubber nanoparticle and Micro-fibre thermoplastic veil toughening
Abstract
<p>This work investigates the effect of hygrothermal ageing on the interlaminar fracture of carbon fibre/epoxy composite laminates with (i) core–shell rubber nanoparticle toughening, (ii) micro-fibre non-woven thermoplastic veil toughening, and (iii) hybrid nanoparticle and veil toughening. The untoughened and toughened carbon fibre/epoxy composite laminates are manufactured by resin infusion of a unidirectional non-crimp carbon fabric and a two-part epoxy matrix with out-of-autoclave curing. Core-shell rubber nanoparticles with 100 nm to 3 μm diameters are mixed in the epoxy resin at a 10 wt% content for matrix toughening. Thermoplastic veils with ∼ 20 g/m<sup>2</sup> made of short micro-fibres (i.e. polyphenylene sulfide fibres with ∼ 6 mm in length and ∼ 9 µm diameter) are used for interlaminar toughening. Double cantilever beam and end-notch flexure fracture tests are conducted with completely dry, moisture saturated and re-dried laminate conditions. The results show that the Mode-I and Mode-II fracture behaviour (i.e. R-curves, fracture energies, and crack paths) of the baseline and toughened laminates by nanoparticles and veils are considerably affected by hygrothermal ageing. In the case of veil toughening and hybrid nanoparticle and veil toughening, it is found that the Mode-I and Mode-II fracture energies are considerably degraded, yet the interlaminar fracture response of the toughened laminates is superior to that of the untoughened dry laminates. In addition, the carbon/epoxy laminates with hybrid nanoparticle and veil toughening have further decreased fracture energies—rather than restored—after redrying, which indicates that the degradation due to hygrothermal ageing is irreversible.</p>