People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mouritz, Adrian P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Bioinspired design optimization for pseudo-ductility in platelet fibre laminatescitations
- 2019Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy compositescitations
- 2018Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillerscitations
- 2018Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplateletscitations
- 2017Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capabilitycitations
- 2017Porous PDMS/CNFS composites for stretchable strain sensors
- 2017Alignment of nano and micron diameter carbon fillers in epoxy via electric field
- 2017Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibrescitations
- 2017Ductility of platelet composites inspired by nacre design
- 2017Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite jointscitations
- 2017Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductorscitations
- 2016A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocompositescitations
- 2016Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carboncitations
- 2015Disbond monitoring of adhesive joints reinforced with carbon nanofibres
- 2015Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocompositescitations
- 2015Epoxy nanocomposites with aligned carbon nanofillers by external electric fields
- 2015Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibrescitations
Places of action
Organizations | Location | People |
---|
article
Bioinspired design optimization for pseudo-ductility in platelet fibre laminates
Abstract
<p>Platelet designs inspired by nacre shell microstructure are a novel approach to confer pseudo-ductile deformation properties to brittle fibre reinforced polymer laminates while retaining high stiffness and strength. Here we present an experimental and finite element modelling study to investigate the effects of tiling pattern, overlapping length and interlaminar toughness of the ply platelets on the tensile properties, pseudo-ductility, and failure modes of platelet laminates inspired by nacre. The findings are then used to optimize the design for maximal pseudo-ductility for a given tensile strength. Experimental results show that unidirectional platelet laminates can possess tensile strengths in excess of 1 GPa while pseudo-ductile deformation accounts for more than ∼ 50% of the ultimate failure strain. Finite element modelling of platelet laminates reveals that the amount of pseudo-ductility can be tailored via the design optimization of the tiling pattern, overlap length, composite thickness and mode II interlaminar toughness of the platelets. The mechanisms controlling the pseudo-ductility effect in the bioinspired platelet laminates is described.</p>