Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Irfan, M. S.

  • Google
  • 3
  • 6
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023MXene and graphene coated multifunctional fiber reinforced aerospace composites with sensing and EMI shielding abilities51citations
  • 2023Monitoring the thermomechanical response of aerospace composites under dynamic loading via embedded rGO coated fabric sensors5citations
  • 2022In-situ monitoring of reinforcement compaction response via MXene-coated glass fabric sensors13citations

Places of action

Chart of shared publication
Khan, T.
3 / 10 shared
Umer, R.
3 / 7 shared
Liao, K.
2 / 3 shared
Ali, Muhammad A.
3 / 7 shared
Anwer, S.
1 / 1 shared
Ubaid, F.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Khan, T.
  • Umer, R.
  • Liao, K.
  • Ali, Muhammad A.
  • Anwer, S.
  • Ubaid, F.
OrganizationsLocationPeople

article

MXene and graphene coated multifunctional fiber reinforced aerospace composites with sensing and EMI shielding abilities

  • Khan, T.
  • Umer, R.
  • Liao, K.
  • Ali, Muhammad A.
  • Irfan, M. S.
  • Anwer, S.
Abstract

<p>This work is focused on using MXene and reduced graphene oxide coated glass fabrics for manufacturing multifunctional aerospace composites. The coated fabrics acted as sensors and provided useful information about key manufacturing parameters during processing, and mechanical response of the final composite. The electrical resistance changes during resin infusion manufacturing stages such as compaction, resin flow, and resin cure were monitored experimentally. In addition to process monitoring, the utility of manufactured laminates for structural performance was demonstrated by monitoring the piezoresistive response during quasi-static and cyclic flexural tests. The dynamic mechanical analysis (DMA) experiments showed that these in-situ fabric sensors could also detect the thermomechanical response of the composite via monitoring the piezoresistive changes when the temperature is changing. Finally, the electromagnetic interference (EMI) shielding effectiveness was also measured for both types of composites, where MXene based composites showed better shielding effectiveness as compared to reduced graphene oxide-based composites.</p>

Topics
  • impedance spectroscopy
  • experiment
  • glass
  • glass
  • composite
  • bending flexural test
  • resin
  • dynamic mechanical analysis