People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bisagni, Chiara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Resistance-welded thermoset compositescitations
- 2024Characterization and analysis of conduction welded thermoplastic composite joints considering the influence of manufacturingcitations
- 2023The importance of accounting for large deformation in continuum damage models in predicting matrix failure of compositescitations
- 2023Skin-stringer separation in post-buckling of butt-joint stiffened thermoplastic composite panelscitations
- 2022Experimental and numerical evaluation of conduction welded thermoplastic composite jointscitations
- 2022Damage arrest mechanisms in nanoparticle interleaved composite interfaces
- 2022Characterization and analysis of the interlaminar behavior of thermoplastic composites considering fiber bridging and R-curve effectscitations
- 2022FRACTURE TOUGHNESS AND PERFORMANCE OF RESISTANCE-WELDED AND CO-BONDED THERMOSET/THERMOPLASTIC POLYMER COMPOSITE HYBRID JOINTS
- 2021Multiscale damage in co-cured composites - Perspectives from experiments and modelling
- 2020Development of a Numerical Framework for Virtual Testing to Support Design of a Next Generation Thermoplastic Multifunctional Fuselagecitations
- 2019Geometrically nonlinear finite element model for predicting failure in composite structurescitations
- 2019Analysis and testing of a thermoplastic composite stiffened panel under compression
- 2018Virtual testing of thermoplastic composites
Places of action
Organizations | Location | People |
---|
article
Characterization and analysis of the interlaminar behavior of thermoplastic composites considering fiber bridging and R-curve effects
Abstract
Thermoplastic composites can enable the development of new manufacturing techniques to make the aviation industry more sustainable while at the same time greatly benefit cost-efficient and high-volume production. One of the thermoplastic composite materials that can enable this transition is AS4D/PEKK-FC. In this work, the interlaminar properties of AS4D/PEKK-FC thermoplastic composite are characterized and analyzed by means of Mode I, II and Mixed Mode I/II at 50:50 tests, while considering fiber bridging and R-curve effects. In order to achieve stable crack propagation the test configurations are adjusted to account for the large fracture process zone ahead of the crack tip and an appropriate data reduction method is selected. The experimental data is reduced using an inverse methodology to extract cohesive laws based on only the load–displacement curves. Additionally, the use of this methodology provides new insights into the validity of two different mode II tests and the influence of fiber bridging on the mixed-mode interlaminar behavior. The interlaminar damage mechanisms are investigated by means of scanning electron microscopy. The resulting cohesive laws are implemented in commercial finite element software in tabular form, without the need for user-subroutines. All experimental test configurations are analyzed using a single material card and it is shown that fiber bridging and R-curve effects are well captured. ; Aerospace Structures & Computational Mechanics