Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Christensen, Anders Nymark

  • Google
  • 2
  • 4
  • 52

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Quantifying effects of manufacturing methods on fiber orientation in unidirectional composites using structure tensor analysis38citations
  • 2020Characterization of the fiber orientations in non-crimp glass fiber reinforced composites using structure tensor14citations

Places of action

Chart of shared publication
Mikkelsen, Lars Pilgaard
2 / 71 shared
Dahl, Vedrana Andersen
2 / 10 shared
Dahl, Anders Bjorholm
2 / 18 shared
Jeppesen, N.
2 / 4 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Mikkelsen, Lars Pilgaard
  • Dahl, Vedrana Andersen
  • Dahl, Anders Bjorholm
  • Jeppesen, N.
OrganizationsLocationPeople

article

Quantifying effects of manufacturing methods on fiber orientation in unidirectional composites using structure tensor analysis

  • Mikkelsen, Lars Pilgaard
  • Dahl, Vedrana Andersen
  • Christensen, Anders Nymark
  • Dahl, Anders Bjorholm
  • Jeppesen, N.
Abstract

Important properties of fiber-reinforced composites, such stiffness, compression strength, and fatigue resistance, are sensitive to fiber alignment. In this paper, we use structure tensor analysis on CT images to characterize the fiber orientations in three samples of unidirectional fiber-reinforced composites: pultruded carbon, pre-preg carbon, and non-crimp glass fiber fabric. Our results show that the fibers in the pultruded sample are more aligned than fibers in the two other samples. Through local quantitative analysis, we show that misalignment of the individual pre-preg layers contributes to the overall fiber misalignment in the material. For the non-crimp composite, we show that both the stitching of the unidirectional bundles and the backing bundles affect the fiber alignment in unidirectional bundles. Quantifying the misalignment caused by these effects allows manufacturers to tune production parameters, such as stitching thread tension, to minimize the misalignment of the fibers. All our notebooks, code, and data are available online.

Topics
  • Carbon
  • glass
  • glass
  • strength
  • fatigue
  • fiber-reinforced composite
  • quantitative determination method
  • aligned