People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcilhagger, Alistair
University of Ulster
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Lap Shear Strength and Fatigue Analysis of Continuous Carbon-Fibre-Reinforced 3D-Printed Thermoplastic Composites by Varying the Load and Fibre Contentcitations
- 2022Influence of extrusion parameters on filled polyphenylsulfone tufting yarns on open-hole tensile strengthcitations
- 2022On the application of Vickers micro hardness testing to isotactic polypropylenecitations
- 2022Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractionscitations
- 2022Effect of laser processing parameters and carbon black on morphological and mechanical properties of welded polypropylenecitations
- 20223D Printed Strontium and Zinc Doped Hydroxyapatite Loaded PEEK for Craniomaxillofacial Implantscitations
- 2021Experimental Investigations of 3D Woven Layer to-Layer Carbon/Epoxy Composites at Different Strain Ratescitations
- 2021Influence of Binder Float Length on the Out-of-Plane and Axial Impact Performance of 3D Woven Compositescitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2019Influence of Textile Architecture on the Mechanical Properties of 3D Woven Carbon Composites
- 2019Comparative studies of structure property relationship between glass/epoxy and carbon/epoxy 3D woven composites
- 2019Energy Absorption Mechanisms in Layer-to-Layer 3D Woven Composites
- 2019Improved Energy Absorption in 3D Woven Composites by Weave Parameter Manipulationcitations
- 2019A unified framework for the multi-scale computational homogenisation of 3D-textile compositescitations
- 2018Multiscale Computational Homogenisation of 3D Textile-based Fiber Reinforced Polymer Composites
- 2017Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine bladescitations
- 2017Development of an Embedded Thin-film Strain-sensor-based SHM for Composite Tidal Turbine Blades
- 2010Analytical Elastic Stiffness Model for 3D Woven Orthogonal Interlock Compositescitations
Places of action
Organizations | Location | People |
---|
article
Influence of Binder Float Length on the Out-of-Plane and Axial Impact Performance of 3D Woven Composites
Abstract
This paper shows modifying binder float-length, an easily adjustable parameter, there is significant influence on impact energy absorption, impact resistance and damage tolerance in 3D-woven layer-to-layer carbon/epoxy composites. Binder float-length was changed by modifying textile design without changing loom set-up. Three float lengths (1/2, 2/2 and 3/2) in consistent architecture were woven using constant warp density. Out-of-plane drop-weight impact was performed at 32 J&42 J energy and showed increases in float-length decreased energy absorption by 49% and 32% respectively in warp direction with no significant changes in weft. Conversely, in axial impact tests, higher float length showed higher crush force efficiency and specific energy absorption. This study has also concluded, in both out-of-plane and axial impact scenarios, higher float lengths increase damage tolerance. This work has expanded how minor changes in preform parameters can significantly change both out-of-plane and in-plane impact performance of 3D-woven composites without increased manufacturing cost, time or complexity.