People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kallio, Pasi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Does a polymer film due to Rayleigh-instability affect interfacial properties measured by microbond test?citations
- 2024Influence of CO2 laser surface treatment of basalt fibers on the mechanical properties of epoxy/basalt compositescitations
- 2024In-situ SEM micropillar compression and nanoindentation testing of SU-8 polymer up to 1000 s−1 strain ratecitations
- 2022Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell In Vitro Recordings
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2021Modulating impact resistance of flax epoxy composites with thermoplastic interfacial tougheningcitations
- 2021Modulating impact resistance of flax epoxy composites with thermoplastic interfacial tougheningcitations
- 2021Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy compositescitations
- 2020Transparent microelectrode arrays fabricated by ion beam assisted deposition for neuronal cell in vitro recordingscitations
- 2017Automated high-throughput microbond tester for interfacial shear strength studies
- 2016Nanocellulose based piezoelectric sensors
- 2015Adhesive Behavior Study Between Cellulose and Borosilicate Glass Using Colloidal Probe Techniquecitations
- 2015In situ hybridization of pulp fibres using Mg-Al layered double hydroxides
- 2011Towards automated manipulation and characterisation of paper-making fibres and its components
- 2011Micro- and nano-robotic manipulation and characterisation of paper-making fibres and its components
Places of action
Organizations | Location | People |
---|
article
Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy composites
Abstract
The high stiffness and damping properties of flax fibres promote the integration of biocomposites in structural applications. However, the strength of flax/epoxy composites is still limited compared to glass/epoxy composites. Graphene oxide (GO) has proved to be a promising building block for nanocomposites due to its high toughness, stiffness and tunable interfacial interactions with polymers. This study aims to understand the potential of GO-based surface treatment of flax fibres to modify the interfacial adhesion and tensile performance of flax fibre/epoxy composites. GO-modification improves the interfacial shear strength of elementary flax fibre/epoxy by 43%. The interfacial improvement is also established by the 40% higher transverse bending strength compared to untreated flax/epoxy composites. The tensile moduli of GO-modified flax/epoxy composites are on average 2 GPa higher than for untreated flax fibre/epoxy composites in all strain ranges. The quasi-static longitudinal tensile strength of unidirectional composites is not affected by GO-modification.