People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Javanshour, Farzin
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Stiffness of In-Situ Formed Interleaving Polymeric Nanofiber-Epoxy Nanocompositescitations
- 2023Effect of graphene oxide fibre surface modification on low-velocity impact and fatigue performance of flax fibre reinforced compositescitations
- 2023Effect of graphene oxide fibre surface modification on low-velocity impact and fatigue performance of flax fibre reinforced compositescitations
- 2023Interfacial Toughening Strategies for Impact and Fatigue Tolerant Structural Biocomposites
- 2022High-speed thermal mapping and impact damage onset in CFRP and FFRP
- 2022Flax fibre sizings for fibre-reinforced thermosets - investigating the influences of different sizing agents on fibre moisture content and composite properties
- 2022Bearing strength prediction by cfrp and ffrp damage onset criteria for riveted joints
- 2022High-Speed Thermal Mapping and Impact Damage Onset in CFRP and FFRP
- 2022The performance of flax reinforced composites for wireless and sport applications : natural additives and sandwich concepts
- 2022Flax fibre sizings for fibre-reinforced thermosets - investigating the influences of different sizing agents on the composite properties
- 2022Bearing strength prediction by cfrp and ffrp dam age onset criteria for riveted joints
- 2022Impact and fatigue tolerant natural fibre reinforced thermoplastic composites by using non-dry fibrescitations
- 2022Impact and fatigue tolerant natural fibre reinforced thermoplastic composites by using non-dry fibrescitations
- 2021Modulating impact resistance of flax epoxy composites with thermoplastic interfacial tougheningcitations
- 2021One surface treatment, multiple possibilities : Broadening the use‐potential of para‐aramid fibers with mechanical adhesioncitations
- 2021One surface treatment, multiple possibilitiescitations
- 2021Microscale sensor solution for data collection from fibre-matrix interfacescitations
- 2021One Surface Treatment, Multiple Possibilities: Broadening the Use-Potential of Para-Aramid Fibers with Mechanical Adhesioncitations
- 2021Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy compositescitations
- 2017Synergistic role of in-situ crosslinkable electrospun nanofiber/epoxy nanocomposite interlayers for superior laminated compositescitations
Places of action
Organizations | Location | People |
---|
article
Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy composites
Abstract
The high stiffness and damping properties of flax fibres promote the integration of biocomposites in structural applications. However, the strength of flax/epoxy composites is still limited compared to glass/epoxy composites. Graphene oxide (GO) has proved to be a promising building block for nanocomposites due to its high toughness, stiffness and tunable interfacial interactions with polymers. This study aims to understand the potential of GO-based surface treatment of flax fibres to modify the interfacial adhesion and tensile performance of flax fibre/epoxy composites. GO-modification improves the interfacial shear strength of elementary flax fibre/epoxy by 43%. The interfacial improvement is also established by the 40% higher transverse bending strength compared to untreated flax/epoxy composites. The tensile moduli of GO-modified flax/epoxy composites are on average 2 GPa higher than for untreated flax fibre/epoxy composites in all strain ranges. The quasi-static longitudinal tensile strength of unidirectional composites is not affected by GO-modification.