People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saeedifar, Milad
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023The effect of alternating the sequence of variable‐energy repeated impact on the residual strength and damage evolution of composite laminatescitations
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap jointcitations
- 2021Deformation and damage evolution of a full-scale adhesive joint between a steel bracket and a sandwich panel for naval applicationcitations
- 2021Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap jointcitations
- 2021Fiber reinforced polymer composites in bridge industrycitations
- 2021Fiber reinforced polymer composites in bridge industrycitations
- 2021Damage assessment of a titanium skin adhesively bonded to carbon fiber–reinforced plastic omega stringers using acoustic emissioncitations
- 2020Deformation and damage evolution of a full-scale adhesive joint between a steel bracket and a sandwich panel for naval applicationcitations
- 2020Damage assessment of NCF, 2D and 3D Woven Composites under Compression After Multiple-Impact using Acoustic Emissioncitations
- 2020High performance quasi-isotropic thin-ply carbon/glass hybrid composites with pseudo-ductile behaviour loaded off-axiscitations
- 2019Compression After Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Compositescitations
- 2019Acoustic emission based investigation on the effect of temperature and hybridization on drop weight impact and post-impact residual strength of hemp and basalt fibres reinforced polymer composite laminatescitations
- 2019Damage characterization of adhesively-bonded Bi-material joints using acoustic emissioncitations
- 2018Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditionscitations
- 2017Acoustic Emission-Based Methodology to Evaluate Delamination Crack Growth Under Quasi-static and Fatigue Loading Conditionscitations
- 2017The application of an acoustic emission technique in the delamination of laminated composites
- 2015Investigation of push-out delamination using cohesive zone modelling and acoustic emission techniquecitations
- 2014Interlaminar Fracture Toughness Evaluation in Glass/Epoxy Composites Using Acoustic Emission and Finite Element Methodscitations
Places of action
Organizations | Location | People |
---|
article
Damage assessment of NCF, 2D and 3D Woven Composites under Compression After Multiple-Impact using Acoustic Emission
Abstract
This study is devoted to the damage characterization of Non-Crimp Fabric (NCF), 2D plain-woven (2D-PW) and 3D orthogonal plain-woven (ORT-PW) carbon/epoxy laminates, subjected to compression after multiple-impact loading, using Acoustic Emission (AE). The ultrasonic C-scan images showed that the interlaminar damage area induced by the single and 3-impact in ORT-PW architecture is 3 and 2 times smaller than NCF and 2D-PW architectures respectively. The impacted specimens were then subjected to the in-plane compression load. Two indices, one based on the mechanical response and another one based on the AE behavior of the laminates, were proposed to compare the performance of different architectures. These indices showed that the ORT-PW had the best performance among all the architectures. Finally, AE was used to distinguish the different damage mechanisms including: matrix cracking, intra and inter-yarn debonding, defected-fiber breakage, intact-fiber breakage and z-binder fiber breakage in the CAI tests of the architectures.