People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saeedifar, Milad
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023The effect of alternating the sequence of variable‐energy repeated impact on the residual strength and damage evolution of composite laminatescitations
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap jointcitations
- 2021Deformation and damage evolution of a full-scale adhesive joint between a steel bracket and a sandwich panel for naval applicationcitations
- 2021Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap jointcitations
- 2021Fiber reinforced polymer composites in bridge industrycitations
- 2021Fiber reinforced polymer composites in bridge industrycitations
- 2021Damage assessment of a titanium skin adhesively bonded to carbon fiber–reinforced plastic omega stringers using acoustic emissioncitations
- 2020Deformation and damage evolution of a full-scale adhesive joint between a steel bracket and a sandwich panel for naval applicationcitations
- 2020Damage assessment of NCF, 2D and 3D Woven Composites under Compression After Multiple-Impact using Acoustic Emissioncitations
- 2020High performance quasi-isotropic thin-ply carbon/glass hybrid composites with pseudo-ductile behaviour loaded off-axiscitations
- 2019Compression After Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Compositescitations
- 2019Acoustic emission based investigation on the effect of temperature and hybridization on drop weight impact and post-impact residual strength of hemp and basalt fibres reinforced polymer composite laminatescitations
- 2019Damage characterization of adhesively-bonded Bi-material joints using acoustic emissioncitations
- 2018Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditionscitations
- 2017Acoustic Emission-Based Methodology to Evaluate Delamination Crack Growth Under Quasi-static and Fatigue Loading Conditionscitations
- 2017The application of an acoustic emission technique in the delamination of laminated composites
- 2015Investigation of push-out delamination using cohesive zone modelling and acoustic emission techniquecitations
- 2014Interlaminar Fracture Toughness Evaluation in Glass/Epoxy Composites Using Acoustic Emission and Finite Element Methodscitations
Places of action
Organizations | Location | People |
---|
article
Compression After Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Composites
Abstract
This paper investigates the effect of the fabric architecture and the z-binding yarns on the compression after multiple impacts behavior of composites. Four fiber architectures are investigated: non-crimp fabric (NCF), 2D plain weave (2D-PW), 3D orthogonal plain (ORT-PW) and twill (ORT-TW) weave. The specimens were subjected to single and multiple low-velocity impacts at different locations with the same energy level (15 J). Non-destructive techniques including ultrasonic C-scanning, X-ray CT and Digital Image Correlation (DIC) are employed to quantitatively analyze and capture the Barely Visible Impact Damage (BVID) induced in the specimens. Although the absorbed energy was approximately the same, damage was the least in 3D woven architectures. In the case of compression after impact, 3D woven composites demonstrated a progressive damage behavior with the highest residual strength (∼92%) while 2D plain weave and NCF specimens showed suddenly catastrophic damage and the residual strength of ∼65% and ∼55% respectively.