People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Isakov, Matti
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Dynamic plasticity of metalscitations
- 2024In-situ synchrotron X-ray diffraction study of the effects of grain orientation on the martensitic phase transformations during tensile loading at different strain rates in metastable austenitic stainless steelcitations
- 2024In-situ synchrotron X-ray diffraction study of the effects of grain orientation on the martensitic phase transformations during tensile loading at different strain rates in metastable austenitic stainless steelcitations
- 2023Microscale Strain Localizations and Strain-Induced Martensitic Phase Transformation in Austenitic Steel 301LN at Different Strain Ratescitations
- 2023In situ damage characterization of CFRP under compression using high-speed optical, infrared and synchrotron X-ray phase-contrast imagingcitations
- 2023In situ damage characterization of CFRP under compression using high-speed optical, infrared and synchrotron X-ray phase-contrast imagingcitations
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Large-Scale Fatigue Testing Based on the Rotating Beam Methodcitations
- 2022Crystal plasticity modeling of transformation plasticity and adiabatic heating effects of metastable austenitic stainless steelscitations
- 2022Strain Hardening and Adiabatic Heating of Stainless Steels After a Sudden Increase of Strain Ratecitations
- 2022Effects of strain rate on strain-induced martensite nucleation and growth in 301LN metastable austenitic steelcitations
- 2021The effect of local copper mesh geometry on the damage induced in composite structures subjected to artificial lightning strike ; Artificial lightning strike onto composite structures - effect of local mesh geometrycitations
- 2021Some aspects of the behavior of metastable austenitic steels at high strain rates
- 2021The effect of local copper mesh geometry on the damage induced in composite structures subjected to artificial lightning strikecitations
- 2020Low-cycle impact fatigue testing based on an automatized split Hopkinson bar devicecitations
- 2020The effect of strain rate on the orientation of the fracture plane in a unidirectional polymer matrix composite under transverse compression loadingcitations
- 2020Evaluation of the strain rate dependent behavior of a CFRP using two different Hopkinson bars
- 2019Adiabatic Heating of Austenitic Stainless Steels at Different Strain Ratescitations
- 2019Fracture toughness measurement without force data – Application to high rate DCB on CFRPcitations
- 2019Uncoupling the effects of strain rate and adiabatic heating on strain induced martensitic phase transformations in a metastable austenitic steelcitations
- 2018Effects of adiabatic heating estimated from tensile tests with continuous heatingcitations
- 2018Strain rate jump tests on an austenitic stainless steel with a modified tensile Hopkinson split barcitations
- 2017Characterization of Flame Cut Heavy Steelcitations
- 2017Experimental fatigue characterization and elasto-plastic finite element analysis of notched specimens made of direct-quenched ultra-high-strength steelcitations
- 2016The effect of initial microstructure on the final properties of press hardened 22MnB5 steelscitations
- 2016Iterative Determination of the Orientation Relationship Between Austenite and Martensite from a Large Amount of Grain Pair Misorientationscitations
- 2015Effect of Strain Rate on the Martensitic Transformation During Plastic Deformation of an Austenitic Stainless Steelcitations
- 2014Sedimentation stability and rheological properties of ionic liquid-based bidisperse magnetorheological fluidscitations
- 2012Strain Rate History Effects in a Metastable Austenitic Stainless Steel
Places of action
Organizations | Location | People |
---|
article
Fracture toughness measurement without force data – Application to high rate DCB on CFRP
Abstract
S.176-187 ; The measurement of the fracture toughness of fiber reinforced composites at high rates of loading is still, despite years of research, not well established. This can be related to challenges in applying appropriate high rate loading on the specimen, accurately measuring the load, and in-situ determination of the crack length. In this work these challenges are addressed by using a direct wedge-on-specimen type loading of a double cantilever beam (DCB) specimen, high resolution optical deformation tracking, and a beam theory based analysis of the specimen deflection and crack length. This approach results in symmetric mode I opening of the crack and a robust analytical determination of the fracture toughness without the need to measure the external forces acting on the specimen nor to visually estimate the crack length. Tests carried out on carbon fiber reinforced epoxy composite at quasi-static and high rates (relative velocity up to 15 m/s) show the validity of the approach. ; 119