Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Villegas, Irene Fernandez

  • Google
  • 11
  • 23
  • 227

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024On the Influence of Welding Parameters and Their Interdependence During Robotic Continuous Ultrasonic Welding of Carbon Fibre Reinforced Thermoplasticscitations
  • 2023Effect of Adherend Thickness on Near-Field Ultrasonic Welding of Single-Lap CF/LMPAEK Thermoplastic Composite Jointscitations
  • 2022Measurement of damage growth in ultrasonic spot welded jointcitations
  • 2018Effect of resin-rich bond line thickness and fibre migration on the toughness of unidirectional Carbon/PEEK joints33citations
  • 2018Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints20citations
  • 2018A study on amplitude transmission in ultrasonic welding of thermoplastic composites60citations
  • 2018Interlaminar fracture toughness of 5HS Carbon/PEEK laminates. A comparison between DCB, ELS and mandrel peel tests26citations
  • 2018Hybrid welding of carbon-fiber reinforced epoxy based composites83citations
  • 2017Effects of release media on the fusion bonding of carbon/PEEK laminates5citations
  • 2016Hybrid welding of carbon-fibre reinforced epoxy based compositescitations
  • 2016Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic weldscitations

Places of action

Chart of shared publication
Herrmann, Axel
1 / 1 shared
Dransfeld, Clemens
1 / 32 shared
Köhler, Filipp
1 / 1 shared
Guevara-Sotelo, Natalia Sofia
1 / 2 shared
Smeets, Eva T. B.
1 / 1 shared
Castro, Saullo G. P.
1 / 27 shared
Rans, Calvin
1 / 4 shared
Alderliesten, René
1 / 44 shared
Sacchetti, Francisco
3 / 6 shared
Grouve, Wouter J. B.
3 / 78 shared
Warnet, Laurent L.
3 / 54 shared
Benedictus, Rinze
2 / 27 shared
Ochôa, Pedro A.
2 / 4 shared
Groves, Roger
2 / 29 shared
Corre, Steven Le
1 / 11 shared
Lévy, Arthur
1 / 27 shared
Palardy, Genevieve
1 / 4 shared
Shi, Huajie
1 / 2 shared
Pappada, Silvio
2 / 4 shared
Lionetto, Francesca
2 / 34 shared
Buccoliero, Giuseppe
2 / 8 shared
Maffezzoli, Alfonso
2 / 75 shared
Morillas, Maria Nicolas
2 / 2 shared
Chart of publication period
2024
2023
2022
2018
2017
2016

Co-Authors (by relevance)

  • Herrmann, Axel
  • Dransfeld, Clemens
  • Köhler, Filipp
  • Guevara-Sotelo, Natalia Sofia
  • Smeets, Eva T. B.
  • Castro, Saullo G. P.
  • Rans, Calvin
  • Alderliesten, René
  • Sacchetti, Francisco
  • Grouve, Wouter J. B.
  • Warnet, Laurent L.
  • Benedictus, Rinze
  • Ochôa, Pedro A.
  • Groves, Roger
  • Corre, Steven Le
  • Lévy, Arthur
  • Palardy, Genevieve
  • Shi, Huajie
  • Pappada, Silvio
  • Lionetto, Francesca
  • Buccoliero, Giuseppe
  • Maffezzoli, Alfonso
  • Morillas, Maria Nicolas
OrganizationsLocationPeople

article

A study on amplitude transmission in ultrasonic welding of thermoplastic composites

  • Corre, Steven Le
  • Lévy, Arthur
  • Palardy, Genevieve
  • Villegas, Irene Fernandez
  • Shi, Huajie
Abstract

Ultrasonic welding of thermoplastic composite materials is a promising joining technique that is now moving towards up-scaling, i.e. the assembling of large industrial parts. Despite its growing technological maturation, the assumed physical mechanisms underlying ultrasonic heating (viscoelastic heating, friction) are still insufficiently understood and modelled. In particular, the hammering phenomenon, resulting from the periodic loss of contact between the sonotrode and adherends due to the high frequency vibration caused to the former, directly impacts the heating efficiency. We propose in this work an original experimental and modelling approach towards a better understanding of the hammering effect. This approach makes combined use of: (i) an experimental static welding setup provided with a high-frequency laser sensor to analyse the vibration amplitude transmitted to the adherends and (ii) an improvement of the multiphysical finite element model already presented in previous works. Results show it is possible to obtain a good estimation of the vibration transmitted to the upper adherend from laser measurements close to the sonotrode. The hammering effect is shown to decrease during the welding process, due to the heating of the interface which directly affects further 2 heat generation. Quantitative introduction of this hammering effect in the existing numerical model results in improved predictions in terms of dissipated power in time.

Topics
  • impedance spectroscopy
  • composite
  • ultrasonic
  • thermoplastic
  • joining