People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Evernden, Mark
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2019Axial Rotation and Lateral Torsional Buckling of Extruded Aluminium Mullions in Curtain Wall Facadescitations
- 2018Impedance spectroscopy as a tool for moisture uptake monitoring in construction composites during servicecitations
- 2018GFRP durability appraisal: mechanical testing of naturally aged composite panelscitations
- 2015Moment redistribution in CFRP strengthened concrete t-beams: an experimental study
- 2015Experimental study of moment redistribution in reinforced concrete slabs strengthened with CFRP sheets
- 2013A parametric study on moment redistribution in FRP-strengthened continuous RC beams
- 2013Experimentally observed behaviour of CFRP sheet strengthening across a shear plane
- 2012Polymeric facades: advanced composites for retrofit
- 2012Advanced composite reinforcement for fabric-formed structural elements
- 2011An FRP durability study
Places of action
Organizations | Location | People |
---|
article
Impedance spectroscopy as a tool for moisture uptake monitoring in construction composites during service
Abstract
This is a first study comparing dielectric spectroscopy and gravimetric measurements of moisture uptake in pultruded glass fibre reinforced polymers (FRPs). Specimens were subjected to sub-Tg hygrothermal aging for 224 days. Impedance spectra in the frequency range 0.1 Hz to 10 MHz were captured during exposure and compared with gravimetric measurements. Moisture concentration was found to increase the FRP’s dielectric permittivity monotonically and decrease bulk resistance. High quality dielectric data was obtained as moisture uptake is independent of inherent changes suggested by mass loss which compromise gravimetry. Dielectric measurements remained sensitive to moisture despite significant mass loss, which typically distorts the weight gain process complicating the commonly adopted gravimetric methodology. Real-time dielectric measurements were obtained from FRP specimens continuously immersed in water and without making use of any additional sensing elements. The novel approach adopted is of high commercial impact as moisture uptake control is recognized as a significant problem by industry.